

Estimation and prediction of traffic dynamics with data-driven low-dimensional model based on SUMO

Dr Jakub Krol (UCL), Dr Bani Anvari (UCL) and Prof Roberto Lot (UoS)

SUMO User Conference 2019 – New Tools Session, 15 May 2019

- Motivation
- Proposed approach
- Estimation and prediction results
- Conclusions and further work

SUMO 2019 - Simulating Connected Urban Mobility

Motivation

Motivation – G-Active project

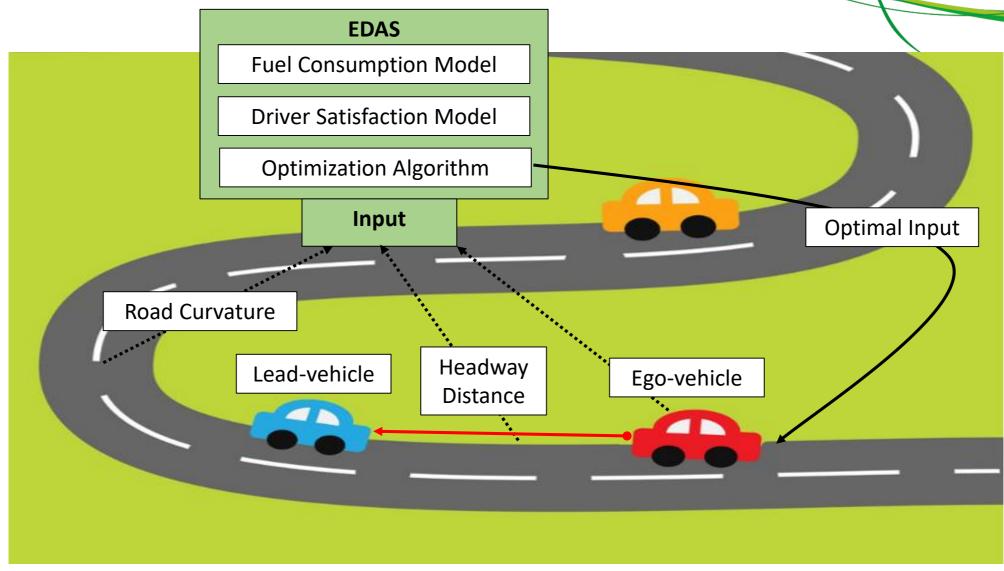
Issues

- Research has estimated that 5-10% of fuel can be saved if drivers do eco-driving
- The state-of-the-art eco-driving techniques do not take into account the naturalistic behaviour of human drivers

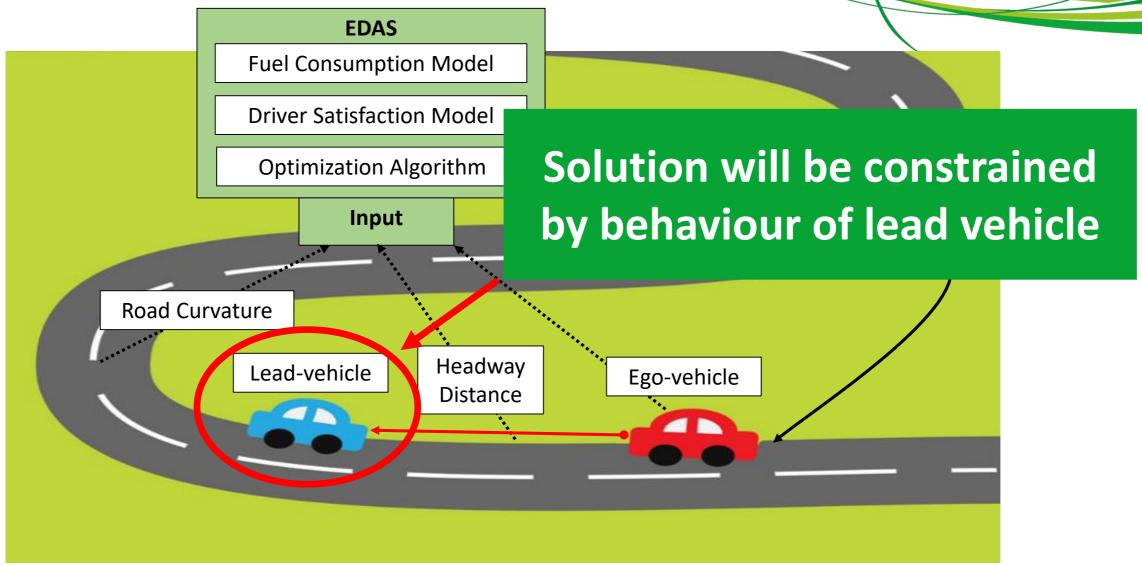
Our Solution

- A unified driver model is proposed which describes the driver preference during car following and cornering cases
- Speed optimization problem is formulated considering both fuel economy and driver preference

SUMO 2019 - Simulating Connected Urban Mobility



SUMO 2019 - Simulating Connected Urban Mobility



SUMO 2019 - Simulating Connected Urban Mobility

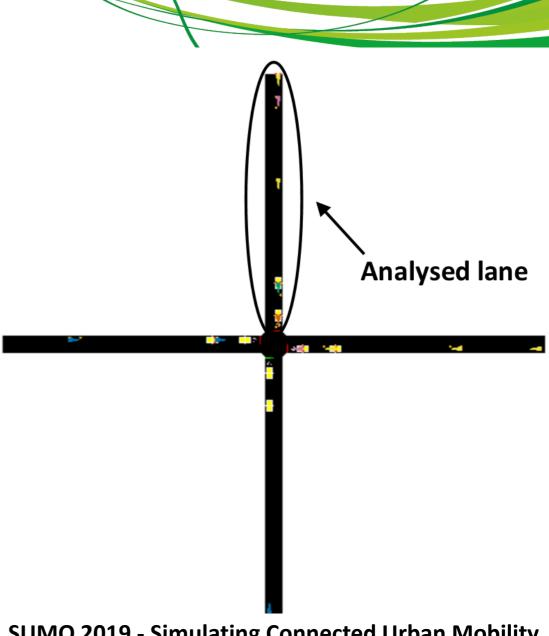
Prediction framework

- 1. Need to be able to make predictions based on available live measurements such as those from induction loops
- 2. We want to be able to sample any location in the network and obtain estimation and prediction corresponding to that point
- 3. Need to be able to obtain estimate and prediction fast

Proposed Approach

Vehicles approaching a junction

- Simple scenario to facilitate understanding and validity of the methodology
- Dimensions: 95.25m long, 3.20m wide
- Induction loop at 89.25m (only measurement available to investigate traffic state)
- Vehicles enter lane on average every 10s, leading to congested traffic conditions
- Vehicles follow Intelligent Driver Model (IDM)
- Simulation time is 2h with sampling rate of 0.1s resulting in 72,000 measurements
- **Train data**: t > 1h, **Test data**: t < 1h



SUMO 2019 - Simulating Connected Urban Mobility

Prediction framework

- 1. Need to be able to make predictions based on available live measurements such as those from induction loops
- 2. We want to be able to sample any location in the network and obtain estimation and prediction corresponding to that point
- Need to be able to obtain estimate and prediction fast

Model-Based Estimation

Assume that investigated system can be expressed as

$$a_{t+1} = A(a_t) + v_t$$
$$y_t = C(a_t) + w_t$$

Given:

- Imperfect dynamic model
- Noisy measurements

What is the optimal estimate of the state?

Solve:

$$\min_{a} \sum_{t} (||a_{t+1} - A(a_t)||_2 + ||y_t - C(a_t)||_2)$$

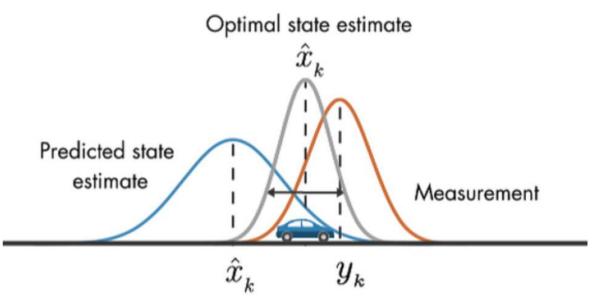
Kalman Filter

Kalman filter gives the optimal state estimate under the following assumptions:

Linear model and Gaussian distribution of inaccuracies

Two-step procedure at each time step:

- Model prediction
- Measurement update



Source: Ulusoy, M. Understanding Kalman Filters, Part 1: Why Use Kalman Filters?

Model-Based Estimation

Assume that investigated system can be expressed as

$$a_{t+1} = A(a_t) + v_t$$
$$y_t = C(a_t) + w_t$$

Given:

- Imperfect dynamic model
- Noisy measurements
 What is the optimal estimate of

Kalman Filter

Kalman filter gives the optimal state estimate under the following assumptions:

Linear model and Gaussian distribution of inaccuracies

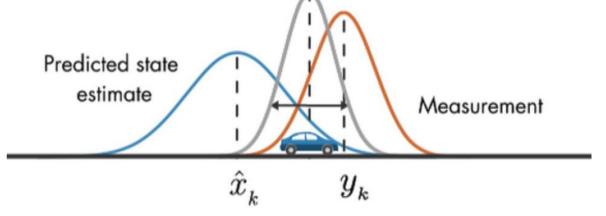
estimate

Two-step procedure at each timestep:

What should be the state of the system?

Solve:

$$\min_{a} \sum_{t} (||a_{t+1} - A(a_t)||_2 + ||y_t - C(a_t)||_2)$$

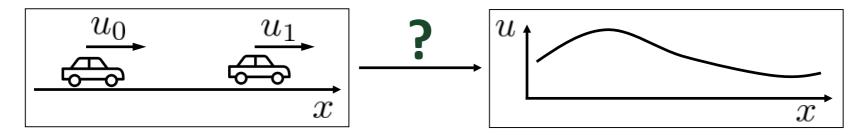


Prediction framework

- 1. Need to be able to make predictions based on available live measurements such as those from induction loops
- 2. We want to be able to sample any location in the network and obtain estimation and prediction corresponding to that point
- Need to be able to obtain estimate and prediction fast

Constructing continuous velocities

Problem:



Adaptive Smoothing Method (Treiber et al, 2002):

• Spatiotemporal domain perturbations propagate downstream at free flow velocity and upstream at congested velocity: $1 \quad \underline{n} \quad \underline{j_{max}}$

$$z_{free} = \frac{1}{\sum \Phi} \sum_{i=j_{min}}^{n} \sum_{j=j_{min}}^{j_{max}} \Phi(x_i - x, t_j - t - x/c_{free}) z_{i,j}$$

Use the interpolated quantity: $z_{interp} = wz_{free} + (1 - w)z_{cong}$

• Exponential kernel used to decay points which are far away. We replace it with: $\Phi(x,t)=rac{1}{x^2+t^2}$

Ref.: Treiber, Martin, and Helbing, Dirk. "An adaptive smoothing method for traffic state identification from incomplete information." Interface and Transport Dynamics. Springer, Berlin, Heidelberg, 2003. 343-360.

Constructing continuous velocities

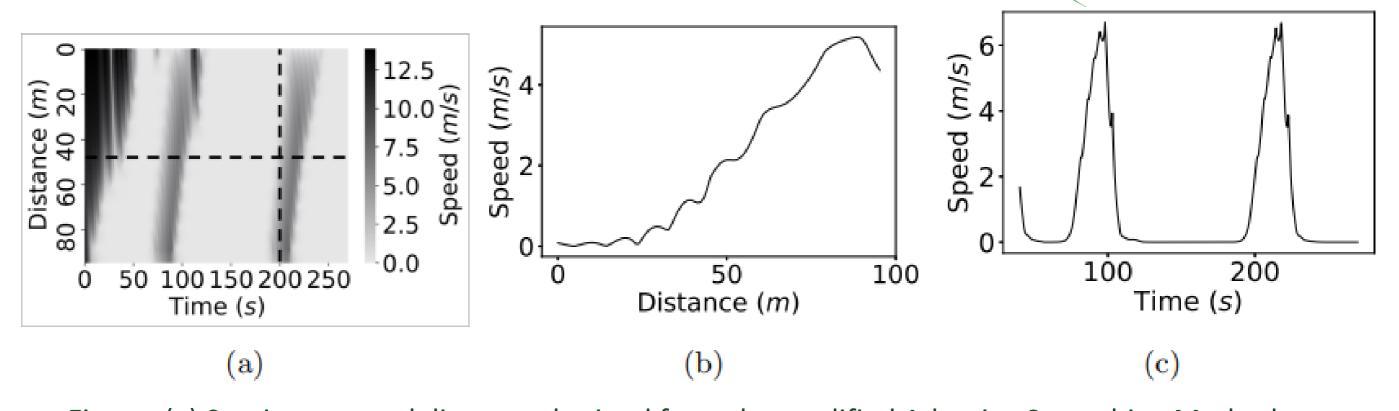


Figure: (a) Spatio-temporal diagram obtained from the modified Adaptive Smoothing Method;

- (b) spatial snapshot at t = 200s;
- (c) temporal snapshot at x = 48m.

Note that locations of the snapshots are represented on the spatio-temporal diagram.

Prediction framework

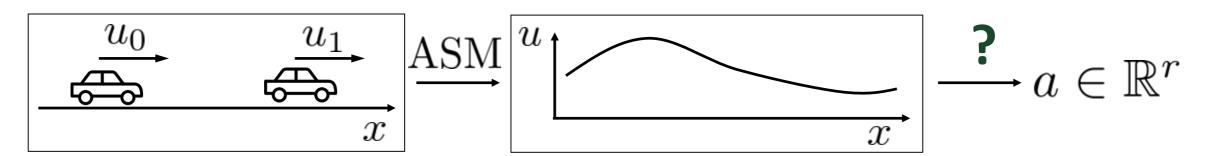
- Need to be able to make predictions based on available live measurements such as those from induction loops
- 2. We want to be able to sample any location in the network and obtain estimation and prediction corresponding to that point
- 3. Need to be able to obtain estimate and prediction fast

Dimensional reduction

- If the state space consists of the discretised spatial domain, the dimension of the problem will grow large at the network level
- Instead we express velocity field as sum of time-invariant structures

$$u(x,t) \approx \sum_{i=1}^{r} a_i(t)\Phi_i(x)$$

• State space will consist of a_i where r can be chosen freely



SUMO 2019 - Simulating Connected Urban Mobility

Dimensional reduction

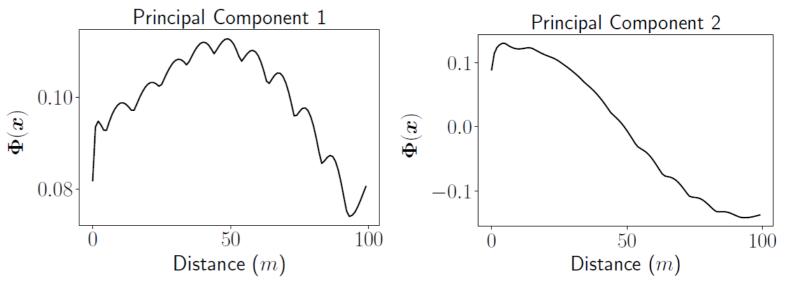
Principal Component Analysis

Principal Component Analysis gives structures Φ_i and coefficients a_i which are optimal with respect to l^2 – norm



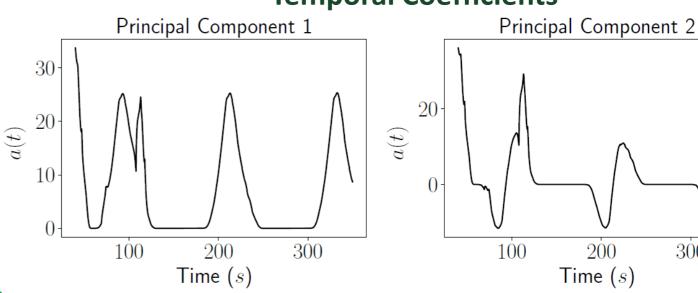
Source: Nazrul, Syed S. The DOs and DON'Ts of Principal Component Analysis

Spatial Components



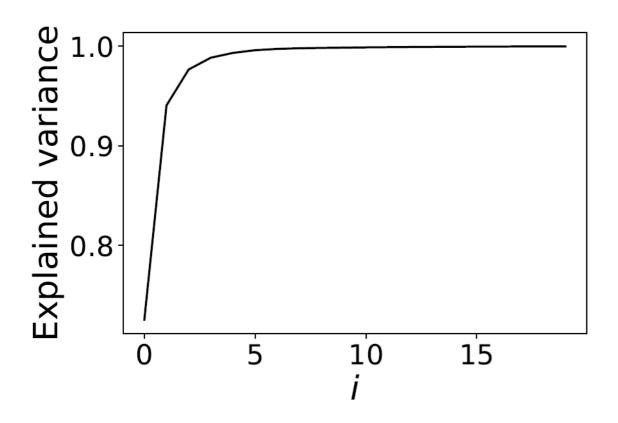
Temporal Coefficients

300



Dimensional reduction and linear model

 Number of principal components are chosen based on explained variance, where six components explain 99% of variance



- Computation time will be reduced by utilising the linearity of the Kalman filter
- Get models by solving following on train data:

$$\min_{A} \sum_{t} ||a_{t+1} - Aa_t||_2$$

$$\min_{C} \sum_{t} ||\boldsymbol{y}_t - Cx_t||_2$$

where
$$y_t = [y_t, y_{t-1}, \dots, y_{t-5}]^{\top}$$

Furthermore we provide noise covariance matrices

$$oldsymbol{Q} = oldsymbol{e}_p oldsymbol{e}_p^ op \quad oldsymbol{R} = oldsymbol{e}_m oldsymbol{e}_m^ op$$

where

$$egin{aligned} oldsymbol{e}_p &= egin{bmatrix} oldsymbol{a}_1 - oldsymbol{A} oldsymbol{a}_0 & \dots & oldsymbol{a}_N - oldsymbol{A} oldsymbol{a}_{N-1} \end{bmatrix} \ oldsymbol{e}_m &= egin{bmatrix} oldsymbol{y}_0 - oldsymbol{C} oldsymbol{a}_0 & \dots & oldsymbol{y}_N - oldsymbol{C} oldsymbol{a}_N \end{bmatrix} \end{aligned}$$

Framework training

- Run SUMO simulation to obtain underlying discrete data
- Construct continuous velocity field
- Calculate principal components
- Project high-dimensional data to obtain low-dimensional state
- Find linear dynamics matrices and corresponding error covariance matrices

Application

Estimation:

 At each time step apply Kalman filter to get state estimate

Prediction:

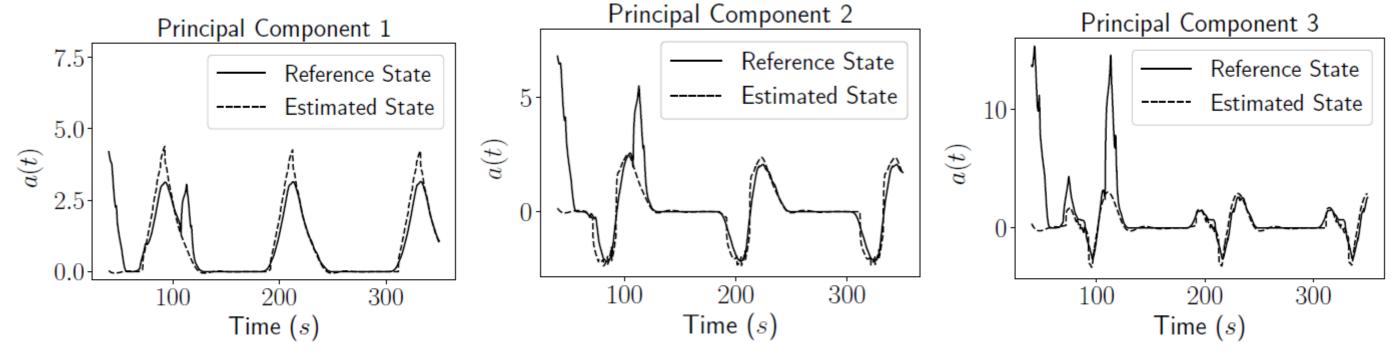
- Use linear model to propagate state forward in time
- Recompose the high dimensional velocity field using predicted state
- Integrate along spatiotemporal diagram from initial position

SUMO 2019 - Simulating Connected Urban Mobility

Estimation and Prediction Results

Kalman filter modification

• In the two step procedure, when measurements are not available update step is omitted

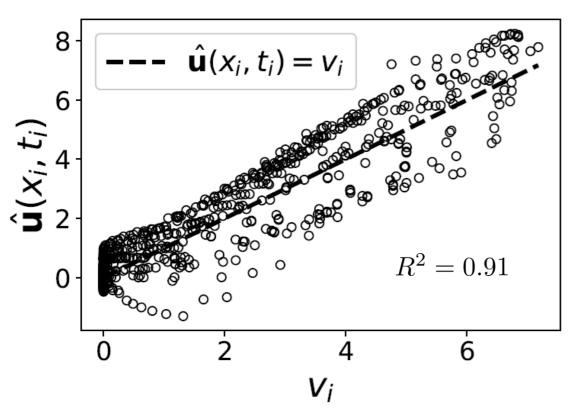


Relative error

$$\epsilon_i^2 = \frac{\sum_{t>150} (a_i(t) - \hat{a}_i(t))^2}{\sum_{t>150} (a_i(t))^2} \quad \frac{\mathbb{E}_{a_i}}{\mathbb{E}_{a_i}}$$

Principal Component	1	2	3	4	5	6
ϵ_i	0.242	0.284	0.382	0.584	0.856	0.789

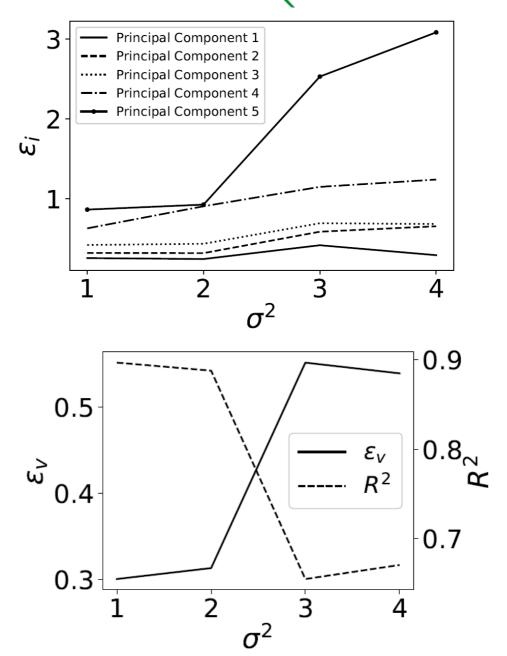
Discrete metric – perfect drivers



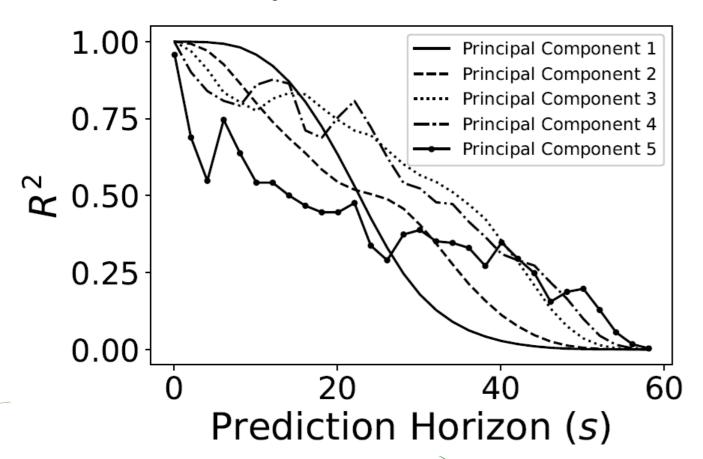
Imperfect drivers:

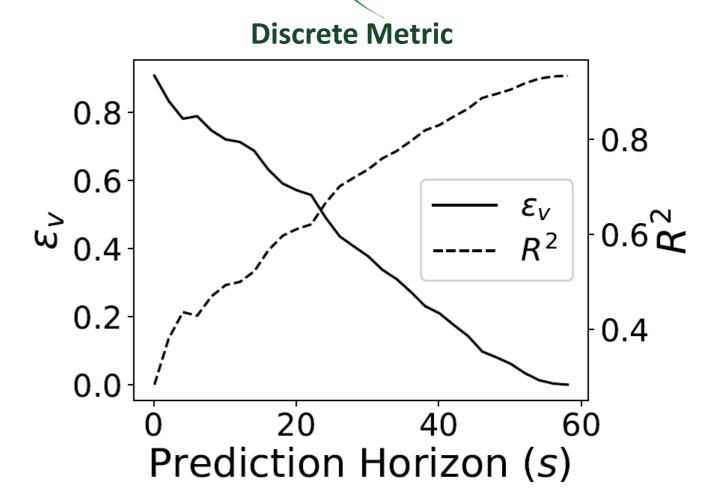
• For desired speed $u^*(t)$ given by IDM, the speed of each vehicle is modified such that $u(t)=ku^*(t)$ where $k\sim\mathcal{N}(1,\sigma^2)$

Imperfect drivers



Projection Coefficients





SUMO 2019 - Simulating Connected Urban Mobility

Conclusions and Future Work

- The methodology which estimates velocity profiles based on the real-time information from induction loops was presented.
- Implementation is linear and low-dimensional; suitable in situations where computational cost and simplicity are of high importance.
- Analysis on a problem of vehicles approaching traffic junction in a congested traffic showed that, due to semi-linear dynamics, such system can be well estimated with few structures and linear Kalman filter.
- Robustness in the estimation of key dynamical features when applied to dynamics with driver imperfections.

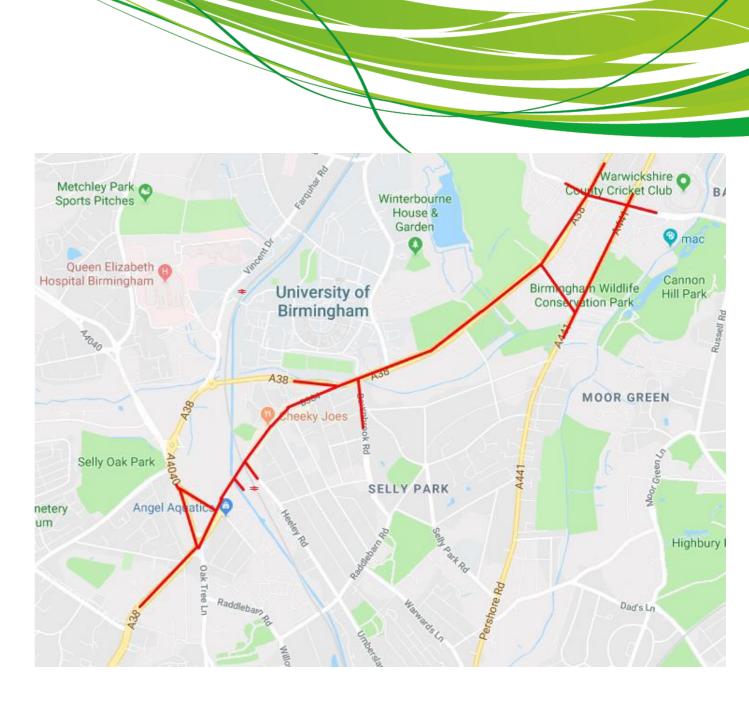
SUMO 2019 - Simulating Connected Urban Mobility

Simulated Urban Scenario

- Selly Oak, Birmingham
- Birmingham makes induction loop measurements publicly available, allowing us to test validity of estimation and prediction framework

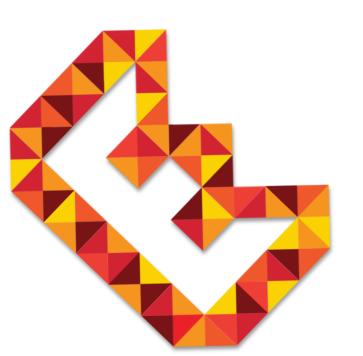
Potential method improvements

- Nonlinear Dynamics: IDM-based Galerkin projection, Machine Learning
- Alternative dimensional reduction techniques
- Improvements to ASM: Smoothing parameters, Different kernel choice



SUMO 2019 - Simulating Connected Urban Mobility

Many thanks for your attention.



Dr Jakub Krol @JakubKrol5 j.krol@ucl.ac.uk

