Data Analysis of Phoenix Reusable Launch Vehicle Demonstrator Flight Test

Ravindra Jategaonkar*
DLR, German Aerospace Center, 38108 Braunschweig, Germany

Roland Behr†
European Aeronautic Defence and Space Company, Space Transportation,
81663 Munich, Germany

Wilhelm Gocke‡
European Aeronautic Defence and Space Company, Space Transportation,
28361 Bremen, Germany

Christoph Zorn§
DLR, German Aerospace Center, 38108 Braunschweig, Germany

Abstract

The Phoenix vehicle was designed to flight demonstrate the automatic and unpowered horizontal landing of a representative, winged reusable launch vehicle. The shape of the test vehicle was derived from the suborbital reusable launch vehicle concept Hopper. Three automatic landing tests were completed successfully in May 2004. Methods of system identification were applied to the flight data to evaluate the performance and to improve the design models and databases for future applications. A specific emphasis was placed on the evaluation of the onboard navigation system, air data sensor, aerodynamic model, landing gear effects and ground-roll characteristics. This paper gives a brief overview of the Phoenix mission and elaborates on the flight data analysis and of the preceding wind tunnel campaigns, to allow a comparison of results from different approaches.

* Senior Scientist, DLR Institute of Flight Systems, Lilienthalplatz 7; Associate Fellow AIAA.
† R&D Engineer, Department TP 21.
‡ Senior Engineer, Department TO 73.

Copyright © 2006 by DLR, Institute of Flight Systems, Braunschweig, Germany and EADS Space Transportation, Bremen, Germany.
Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

For more details about this article, please contact:

Dr. Ravindra Jategaonkar
DLR Institute of Flight Systems
Lilienthalplatz 7
38108 Braunschweig, Germany

Phone: (+49) 531 295 2684
Fax: (+49) 531 295 2647
e-Mail: jategaonkar@dlr.de