DLR Portal
Home
|
Sitemap
|
Contact
|
Accessibility
Imprint and terms of use
Privacy
Cookies & Tracking
|
Deutsch
You are here:
Home
:
Competence & Projects
:
Air Transport Economics & Environmental Studies
Advanced Search
Institute
News
Departments
Competence & Projects
Air Transport Monitoring & Reporting
Air Transport Forecasts & Scenarios
Air Transport Data and Modelling
Systems analysis, assessment and market potential of new technological developments in aviation
Air Transport Economics & Environmental Studies
Project Coordination
Training & Teaching
Publications
Jobs & Careers
On-Topic Links
Aviation Economics and Environment
Back
Print
KuuL - For a climate-friendly and energy-efficient long-range flight
14 September 2021
The German government's aviation strategy and the European "Flightpath 2050" agenda specify that CO2 emissions and, in particular, the climate impact of air traffic must be significantly reduced. To achieve the associated goals, it must be possible to fly as CO2-neutrally as possible and ideally also climate-neutrally. However, this not only requires the design and development of extremely efficient aircraft configurations and engines. In addition, CO2-neutral fuels generated with renewable energy, so-called "Sustainable Aviation Fuels" (SAF), must be used and the remaining climate impact must be reduced due to the continued presence of engine emissions in the atmosphere. Current aircraft designs require certain flight speeds and associated optimum flight altitudes for efficiency and also cost reasons.
In the future, not only efficiency, but in particular the sum of all climate effects, i.e. the influence on the temperature of the atmosphere, must be considered as a target variable. This will have an influence on the optimum speeds, flight altitudes, flight routes and thus also on the design of the aircraft and the engine.
The DLR project KuuL (Klimafreundlicher ultra-effizienter Langstreckenflug) is dedicated to this task. In this project, scientists from seven DLR institutes are investigating and designing the influence of new, synthetic fuels and alternative mission profiles (different cruise altitudes and cruise speeds) with aircraft and engine designs adapted to these. Criteria will be the impact on the atmosphere as well as economy and flight time.
Building on previous projects considering conventional fuels this project shall focus on tailored synthetic fuels and improved atmospheric models for assessing the impact on the climate and to determine the requirements for the most promising aircraft and engine operation conditions. By designing new aircraft and engines snowballing effects will be exploited as far as possible.
Our department provides a list of relevant routes based on an empirical flight plan analysis and regulatory environmental costs as input for the operating cost assessment.
Related Topics
Aircraft Design, Testing and Performance
Copyright © 2022 German Aerospace Center (DLR). All rights reserved.