On the use of multi-temporal SAR data to retrieve surface and vegetation parameters

Francesco Mattia, Giuseppe Satalino, Anna Balenzano

Consiglio Nazionale delle Ricerche (CNR),
Istituto di Studi sui Sistemi Intelligenti per l’Automazione (ISSIA), Bari, Italy

ESA study: “Exploiting longer wavelength SAR data for the improvement of surface process modelling” (ELASIM),
ESA-ESTEC contract n. /19558/06/NL/HE
Objective

- develop and assess a retrieval algorithm for soil moisture content underlying winter wheat using L (or C)-band SAR data
 - simple: single/double polarization (e.g. PALSAR system in default modes, i.e. HH pol., 20°-40° incidence; ASAR/Sentinel-1, VV/VH, 20°-30° incidence)
 - robust: a priori information
 - multi-temporal data: revisiting time (e.g. 1-6 weeks)

Context

- Assess the potential of integrating radar data into crop growth and hydrological models (local-regional scales)
Outline

- Experimental data: Agrisar 2006 campaign
 - in situ & ESAR multi-temporal data
- SAR data sensitivity to surface parameters
- Direct model: simplified approach
- Retrieval algorithm:
 - use of a priori information & multi-temporal data
- Discussion of results
- Conclusions & future work
AGRISAR’06 Intensive campaigns: April, June & July

Roughness measurements: April

All the characterized surfaces were vertically smooth \((ks<0.5 \text{ at } L \text{ band})\)

Grid of total TDR measurements

377 points on wheat fields

<table>
<thead>
<tr>
<th>TDR - soil moisture (%)</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>occurrence</td>
<td>3</td>
<td>8</td>
<td>13</td>
<td>18</td>
<td>23</td>
<td>28</td>
</tr>
</tbody>
</table>

Wheat fields

- April, 19-21
- June, 06-07
- July, 04-06
ESAR sensitivity to soil moisture content

- Good sensitivity to m_v: $\approx 2\text{dB}/5\%$
- Important scatter of both HH & VV
- $VV < HH \rightarrow VV$ attenuated by canopy
- HH almost no interaction with the canopy

Field 230 – L band
avg. inc. angle 40°

Field 221 – C band
avg. inc. angle 32°

- Previous experiments (e.g. Matera (I), 2001; Sheffield (UK), 2003) at C-band, VV & 23° inc.: good sensitivity to m_v even at the peak growing stage
- At C-band & low incidence, ESAR observations over Demmin in substantial agreement with previous studies
Direct model: semi-empirical approach

\[F(\theta, \lambda, p_{j=1..M}) = \sigma_0^S e^{-2\gamma(\bullet)h \sec(\theta)} \]

An anisotropic uniaxial lossy dielectric slab with an effective permittivity \(\varepsilon_r^{\text{veg}} = \begin{pmatrix} \varepsilon'_o + j\varepsilon'_e & 0 & 0 \\ 0 & \varepsilon'_o + j\varepsilon'_e & 0 \\ 0 & 0 & \varepsilon'_o + j\varepsilon'_e \end{pmatrix} \)

\(\gamma_{VV} = b_{VV} W \), vegetation water content / m³

mostly dependent on crop structure & \(\lambda \)

Expected Validity:
- C-band: VV & 20°-30° inc.
- L-band: 20°-50° inc.
 \(b_{HH} \approx 0 \)
Retrieval algorithm

- Ancillary data:
 - Land use, crops (e.g. broad/narrow leaves)

- A priori information:
 - m_v & s (& vwc)

- In situ data

Preprocessing
(calibration, registration, filtering, masking)

Inversion:
constrained minimization
(Mattia et al., 2006)

Output:
N - m_v (& vwc) maps

Input:

- Trade off:
 - N-large & Δt “short” (i.e. roughness const.)
- L-band: HH
- C-band: VV & low inc.

Corr. length: no a priori information \to fitting parameter

\[
C = \frac{1}{N} \sum_i \frac{\| (\sigma_0)_i - F_i(\theta, \lambda, P_{j=1..M}) \|^2}{(\Delta \sigma_0)_i^2} + \frac{1}{M} \sum_j \frac{\| p_j - \hat{p}_j \|^2}{(\Delta p)_j^2}
\]
L-band, 3 images & Δt ≈ 1 week

April 19

June 13

July 07

y = A + Bx
A = 1.45(%) & B = 0.99
rms error = 4.11(%) & R² = 0.84

DoY: 109, 158, 186

SAR-retrieved mₜ (%) vs Measured-TDR mₜ (%)
Perturbation: L-band, 3 images & $\Delta t \approx 1$ week

$\hat{m}_v^{\text{pert.}} = \hat{m}_v^{\text{unpert.}} + \varepsilon$

ε: Gaussian Noise (0% mean & 5% std)

$m_v^0 = [6.13\%, 0.37\%, -10.5\%]$
L-band, 3 images & Δt ≈ 2 weeks

$y = A + Bx$
$A = 3.93(\%) \& B = 0.77$

rms error = 4.97(\%) \& $R^2 = 0.71$

Day: 109, 158, 186
L-band, 3 images & $\Delta t \approx 5$ weeks
C-band over field 221, 3 images & $\Delta t \approx 1$ week

Field 221: low incidence angle

DoY
109 123 131 136 144 158 164 172 186 193 207

Wheat fields
April, 19-21
June, 06-07
July, 04-06

C-band SAR derived vol. sol. moisture (%) vs L-band SAR derived vol. sol. moisture (%)

$y = A + Bx$

$A = 5.72(\%) \quad & \quad B = 0.70$

rms error = 4.27(%) $\quad & \quad R^2 = 0.61$

9 dates; mean m_v values estimated over field 221
C-band over field 221, 3 images & $\Delta t \approx 2$ weeks

9 dates; mean m_v values estimated over field 221

$y = A + Bx$

$A = 6.14(\%)$ & $B = 0.68$

rms error = 3.94(%) & $R^2 = 0.76$
C-band simulated experiment, 3 images

Simulated ground data set

<table>
<thead>
<tr>
<th>Mean Parameters</th>
<th>1st date</th>
<th>2nd date</th>
<th>3rd date</th>
</tr>
</thead>
<tbody>
<tr>
<td><s> (cm)</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
</tr>
<tr>
<td><lcorr> (cm)</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td><Reps></td>
<td>6</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td><vwc> (Kg/m²)</td>
<td>1.2</td>
<td>2.4</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Simulated a priori information

- Mean parameters + ε_p
 - ε_p Gaussian noise: zero mean, std= 20% total variability range

Simulated VV, 23°

\[y = A + B x \]

A= 2.0 (%) & B=0.91

rms error=4.0 (%)
Conclusions

- A soil moisture retrieval algorithm for wheat crops using 3 subsequent SAR acquisitions either at L-band & HH pol. or at C-band & VV pol & low incidence angles was developed.

- Observations over the Demmin site indicate that in order to retrieve superficial soil moisture content with an accuracy of approximately 5% the following two conditions have to be met:
 - availability of a priori information on surface parameters (with an accuracy within approximately 15% of their total variability range)
 - time lag between multi-temporal acquisitions within 2-3 weeks

Future work

- Assess the feasibility of applying the same method to other crops (e.g. sugar beet, winter rape, tomato)
- Apply the algorithm to PALSAR & ASAR data at high & lower resolution