A combined radiative transfer and micrometeorological model application to EAGLE data

Christiaan van der Tol ITC
Joris Timmermans ITC
Wout Verhoef ITC/ NLR
Bob Su ITC
Kitsiri Weligepolage ITC
Oscar Hartogensis WUR
Objective

Combine hyperspectral, multi-directional remote sensing data in a consistent way to calculate:

(1) Net photosynthesis
(2) Energy fluxes
 - Absorbed radiation
 - Sensible heat flux
 - Latent heat flux
 - Soil heat flux
Model structure

Fluxes of energy, H2O, CO2

Meteorological forcing

RTM (SAIL) opt

RTM thermal

RTM fluor

E_{in} opt

E_{out} opt

E_{in} thermal

E_{out} thermal

F

aE

aPAR

aE_i

T_c

Micro-meteorological model
Experimental setup
Speulderbos, 10-30 June 2006

- EC, Scintillometer
- Temperature and humidity
- Wind speed and direction
- Radiation
- Temperature and humidity
- Temperature and humidity
- Contact Temperatures
- Soil moisture, temperature, contact temperatures, heat flux
Radiative transfer using MODTRAN4 input

Optical

Thermal
Canopy + soil fluxes
Speulderbos, 16-20 June 2006

Flux (W m\(^{-2}\))
Net CO2 uptake
Speulderbos, 16-20 June 2006
Friction velocity
Speulderbos, 16-20 June 2006
Outgoing thermal radiation

Speulderbos, 16-20 June 2006
Possibilities...

• Fluorescence
• (Thermal) hot spot effect
• Data assimilation
• Reflectance spectrum soil and leaf in thermal range
• Correlations between biochemistry and leaf reflectance
Acknowledgement

NWO SRON
RIVM
Differences with CUPID

- Use of SAIL for the visible part
 - Partly analytical
 - Not just spherical leaf angle distribution
- 1D model: RTM only used for distribution of light
- Fewer parameters
- Fluorescence is included
- Written in MATLAB
Modelled canopy and soil fluxes

Speulderbos, 16-20 June 2006