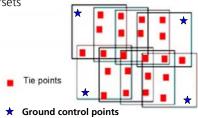

Overview


- ▼ Mosaicking and Calibration Processor
- ▼ Calibration Point Extraction (ICESat, tie-points)
- **▼** Tie-Point Concept
 - ▼ Single point approach
 - → Area based approach
- **→** DEM Calibration
- ▼ Test-site based on SRTM
- **▼** Results
- **→** Conclusion



DEM Calibration

- Calibration: Estimation of correction parameters by "Least-squares adjustment"
- **▼ Tie Points**: Height differences in overlap areas of RawDEMs
 - **→** Height differences to other acquisitions
 - **▼** Estimation of residual errors like slopes
- **▼ Ground Control Points**: Height differences to calibration reference data
 - **▼** Estimation of absolute height offsets
 - ▼ Use of ICESat data as absolute height references

Clido 7

DEM Calibration: Least-squares adjustment with constraints

- **▼ Constraints: Height differences** of Raw DEMs
 - **▼** differences to other acquisitions
 - **▼** differences to calibration reference data

Shall be zero!

CONSTRAINT EQUATIONS

Ground Control Points

$$\hat{H}_{n,GCP} - [\hat{H}_{n,ICP} + \hat{g}_n(x, y)] = 0$$

Tie Points

$$[\hat{H}_{n_{TP2.1}} + \hat{g}_{n_{TP2.1}}(x, y)] - [\hat{H}_{n_{TP2.2}} + \hat{g}_{n_{TP2.2}}(x, y)] = 0$$

 $\hat{H}_{n,GCP}$ height of ground control point $\hat{H}_{n,ICP}$ height of control point in image

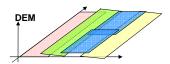
 $\hat{H}_{n_{TP2.1}}$ height of tie point in image $~n_{TP2.1}$ $\hat{H}_{n_{TP2.2}}$ height of tie point in image $~n_{TP2.2}$

DEM Calibration

▼ DEM Calibration: Correction of each data take (not single RawDEM) due to systematic residual errors

HEIGHT ERROR MODEL

$$g_n(x, y) = a_n + b_n x + c_n y + d_n xy + e_n y^2 + f_n y^3$$

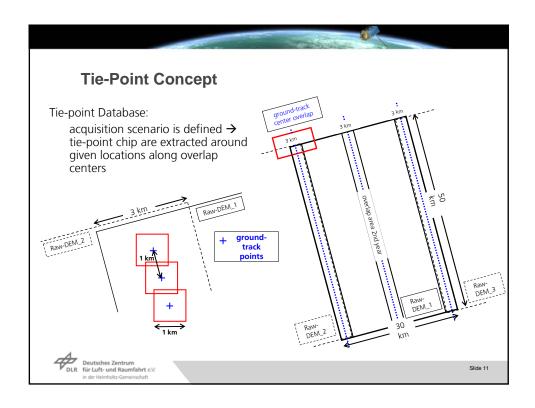

 $\begin{array}{ll} n & \quad \text{index of the data take} \\ a_n...f_n & \quad \text{unknown parameter} \\ x,y & \quad \text{range and azimuth} \end{array}$

→ Main contribution: a-c

→ a: absolute height offset

→ b: slope in range

▼ c: slope azimuth


Slide 9

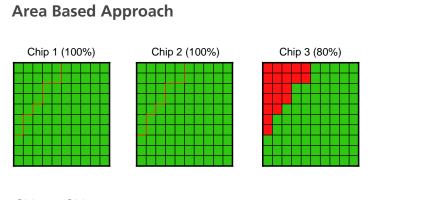
Calibration Point Extraction

Provides input for Calibration:

- **▼** Tie-points between RawDEMs for relative orientation:
 - acquisition scenario is defined
 - best location for tie-points is calculated in advance
 - information is stored in a easy accessible Database
- **▼** Ground control points (ICESat) for absolute orientation:
 - global coverage (86°S 86°N)
 - very large number of points
 - up to 1m height accuracy (adequate selection of points)
 - points are stored in a easy accessible Database

Single Point Approach

- **▼** Tie-point is located at the most appropriated location in the chip
- ▼ Pixel flagged as shadow, layover, water or having low coherence are not taken into account
- ▼ Meanfilter (9x9) identifies most flat area inside the chip
- **→** Height value is averaged over a filtering window (3x3)
- **▼** Standard deviation is stored as additional information (quality information)
- **▼** Master chip is the extracted chip of the first available DEM
- **▼** Master chip identifies tie-point position for all subsequently acquired DEMs



Area Based Approach

- **▼** A pair of chips is analyzed to provide one tie-point information
- **→** Pixel flagged as shadow, layover, water or having low coherence are not taken into account
- **→** Histogram is calculated for the height values of the chip
- ▼ Median height is used for tie-point instead of mean, reducing the impact of outliers
- **▼** Standard deviation is stored as additional information (quality information)

Slide 13

Chip1 + Chip2 -> 100%

Chip1 + Chip3 -> 80%

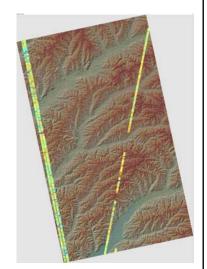
Chip2 + Chip3 -> 80%

lide 14

Simulated Test Site

- → Based on SRTM
- → 12 data takes each divided into 10 RawDEMs
- ▼ No absolute height reference available
- → Adjustment of SRTM to ICESat
- ▼ Initial SRTM heights were distorted
- ▼ Random noise of 2m added

Impact of ICESat points

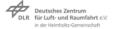

For whole test site:

▼ ICESat points available: > 300.000

→ Pre-Selected: > 90.000

For each RawDEM:

→ Max. number of 200 (most accurate)

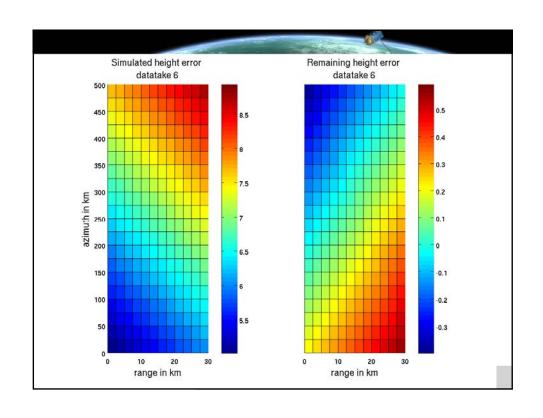


RawDEM with extracted ICESat points

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Comparison of single-point and area-based approach

- ▼ Detailed comparison of specific chip
 - ▼ Determination of best point position
 - ▼ Compare only valid pixel



Slide 1

Comparison of single-point and area-based approach

- 7 The estimated height offset and tilt have to be taken into account together
- ▼ Maximum height difference between ref. DEM and cal. DEM is evaluated

Comparison of single-point and area-based approach 200 ICESat, all TPs DT Id Point-based Area-based -1,60 -1,62 2 -0,47 -0,71 3 0,48 -0,39 4 0,56 0,43 -0,99 -0,69 6 0,68 0,59 -1,88 -0,78 8 -1,64 -1,11 9 -3,42 -3,47 10 -1,43 -1,37 11 -1,25 -1,29 12 1,41 1,48 Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Comparison of single-point and area-based approach

	20 ICESat, all TPs	
DT Id	Point-based	Area-based
1	-1,52	-1,46
2	0,77	-0,76
3	1,06	0,71
4	0,34	0,84
5	-1,73	0,97
6	1,55	0,95
7	-2,81	1,30
8	-3,28	-1,87
9	2,57	3,47
10	2,16	1,98
11	-1,81	-1,59
12	2,73	2,25

Slide 21

Impact of number of tie-points


→ Maximum height difference to Reference DEM

	Number of tie-points	
DT ld	4178	1044
1	-1,621	-2,005
2	-0,712	-0,658
3	-0,387	-0,438
4	0,43	-1,008
5	-0,688	-0,955
6	0,593	0,868
7	-0,778	-1,118
8	-1,114	-1,281
9	-3,467	-4,043
10	-1,373	-1,437
11	-1,293	-0,922
12	1,482	0,774

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Conclusion

- **▼** Advantage of the area based approach is the median filter
- **▼** Reducing the noise by averaging a larger area
- **▼** Results with area-based tie-point approach are better than with the single point approach
- **▼** Similar tests will be carried out with real TanDEM-X data

