Monostatic Calibration of both TanDEM-X Satellites

Marco Schwerdt, Jaime Hueso Gonzalez, Markus Bachmann, Dirk Schrank, Clemens Schulz, Björn Döring

IGARSS 2010, Honolulu, 29th July
TSX-1 / TDX-1 In-Orbit Calibration Plan

TSX-1 Launch (15.06.2007) Summer 2007
TSX-1 Commissioning Phase
5 Months
- GS/SC Checkout
- Geo Cal
- Ant Point
- Ant Model Verification
- Radiometric Calibration

Operational Phase
- Spring 2009
 DRA Campaigns
 1 Month
 - Antenna Model
 - Cross Talk
 - Channel Imbalance
 - Radiometric Calibration

Summer 2009
- TSX-1 Re-Calibration
 1 Month
 - Geo Cal
 - Ant Point
 - Ant Model Verification
 - Radiometric Calibration

≈ Operational Phase ≈
- TSX-1 / TDX-1 In-Orbit Calibration Plan

≈ Operational Phase ≈
- TDX-1 Launch (21.06.2010)
- TDX-1 Comm. Phase
 5 Months
 (Mono + Bi: 3+2)
 - Geo Cal
 - Ant Point
 - ...
TSX-1 Calibration
Geometric Calibration TSX-1

Internal Delay: 208.09 ns

- 2m (requirement)

No trend since 2 years

- Pixel localization accuracy (range) 30 cm (1σ) (2 ns)
- Residual offset (in-flight ⇔ OGC) 3.75 cm (0.25 ns)

6 corner reflectors per pass
8 beams
Pointing Determination in Azimuth TSX-1

Updates
- Improved ground receiver position
- Re-adjustment between star trackers

Improvements

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement accuracy per pass</td>
<td>≤ 7.9 Hz</td>
<td>≤ 2.6 Hz (1σ)</td>
</tr>
<tr>
<td></td>
<td>< 1.0 mdeg</td>
<td>< 0.33 mdeg</td>
</tr>
<tr>
<td>Mean doppler</td>
<td>16 Hz</td>
<td>5.9 Hz</td>
</tr>
<tr>
<td>Residual pointing error</td>
<td>2 mdeg</td>
<td>0.74 mdeg</td>
</tr>
</tbody>
</table>

- Notch patterns with different look angles
- 4 ground receivers per pass
Antenna Pattern Monitoring TSX-1

- **Purpose**
 - Detect changes in the antenna front end and waveguides
 - 120 km range
 - 60 km azimuth

- **Antenna Pattern Monitoring TSX-1**
 - strip_003 strip_004 strip_005 strip_006

- **Quality parameters**
 - σ_{max}
 - μ
 - σ_{min}

- **ScanSAR-mode:**
 - Several beams measured during one pass
 - Across an area of 750 x 750 km²

- **Gamma profile – scan_003**
 - Elevation look angle [deg]

- **Difference Meas / Model – scan_003**
 - Delta profile vs ref. patt. [dB]
Antenna Pattern Long Term Monitoring TSX-1

Shape deviation within the main beam

Beam-to-beam gain prediction

Requirement still fulfilled → stable, no trend

Δ < ± 0.2dB
Radiometric Calibration TSX-1

- **Antenna Model**
 \[\mu \leq \pm 0.2 \text{dB} \]

- **Radiometric Stability**
 \[\begin{array}{|c|c|}
 \hline
 \text{Abs. Cal Factor} & \mu = -56.43 \text{ dB} \\
 \hline
 \text{2007} & -56.58 \text{ dB} \\
 \hline
 \text{2009} & -56.43 \text{ dB} \\
 \hline
 \text{CR: corner reflector} \\
 \mu_{2009} = -56.53 \text{ dB} + 0.10 \text{ dB (CR)} = -56.43 \text{ dB} \\
 \end{array} \]

- **Radiometric Stability**
 \[\text{TerraSAR-X is extremely stable} \]
 \[\text{Requirement 0.5 dB (1\sigma) over 6 months !} \]
Calibration Tasks Performed in 2009 TSX-1

TerraSAR-X in Dual Receive Antenna (DRA) Mode

- 2 instrument chains on receive (main and redundant)
- 2 antenna halves
- Quad-pol mode
- Along track interferometry

DRA Campaigns

- Geometric calibration
- Antenna model verification
- Channel imbalance, phase
- Channel imbalance, amplitude → radiometric calibration
- Cross talk
Channel Imbalance: Amplitude TSX-1

QuadPol Transponder (45° constellation)

QuadPol Corner

Channel imbalance Abs. rad. accuracy during DRA campaigns

-0.18 dB antenna gain Correction, V-pol on receive

max. offset 0.44 dB

HH HV VH VV

μ = -56.05 dB
σ = 0.19 dB

μ = -56.25 dB
σ = 0.29 dB

μ = -56.49 dB
σ = 0.33 dB

μ = -56.46 dB
σ = 0.09 dB

μ = -56.65 dB
σ = 0.12 dB

0.26 dB 0.30 dB (1σ)
One-Way Cross Polar Isolation TSX-1

- Ground receivers aligned for V-pol
- 1-way azimuth pattern measured per pass

1-way cross polar isolation (on transmit)

> 34dB

Requirement ≥ 24dB (1-way, StripMap)
TerraSAR-X Calibration Tasks Performed in 2009

- DRA mode calibration
 - Channel imbalance: 0.26 dB / < 3 deg
 - Cross talk: < - 24.9 dB
- Pixel localization accuracy:
 - 31 cm (range)
 - 54 cm (azimuth)
- Pointing accuracy:
 - < 1 mdeg (azimuth)
 - < 4 mdeg (elevation)
- Radiometric stability:
 - 0.15 dB (over 2 years)
- Re-calibration 2 years after launch
- 213 acquisitions
 - 171 over rainforest
 - 42 cal-field (306 targets)
- 27 DLR colleagues
- Absolute radiometric accuracy:
 - 0.39 dB (StripMap)
 - 0.46 dB (DRA Quad-pol)

TerraSAR-X is stable with outstanding performance

TerraSAR-X Calibration Team
TDX-1 Calibration
TDX-1 Monostatic Calibration Strategy

2.5 months (summer 2010)
1. Geometric calibration
2. Antenna pointing
3. Antenna model
4. Radiometric calibration
 StripMap and ScanSAR

Cal test sites
* Rainforest: distributed field
* South Germany: 30 calibration sites from which 17 are permanently installed corner reflectors

Around 60 calibration campaigns with reference point targets: transponders and corners
More than 1000 datatakes will be analyzed
Calibration Field in South Germany near by Oberpfaffenhofen
First Results: Chirp Comparison of TDX-1 – TSX-1

- Receive pulses, BW = 150MHz, UP-chirp, pulse length = 32µs

TDX-1

Spectrogram of the REAL CHIRP (dB)

TSX-1

Spectrogram of the REAL CHIRP (dB)

Similar spectrograms → important for bistatic operation
First results TDX-1: TRM Characterization – PN Gating

Transmit
(normalised to max level) cold/hot

Receive
(normalised to max level) cold/hot

Warm instrument stability

Transmit
- Phase [degrees]
- Amplitude [dB]

Receive
- Phase [degrees]
- Amplitude [dB]

blue: measured in flight cold
red: measured in flight hot
First Results TDX-1: Antenna Pattern over Rainforest

Within requirements
First Results TDX-1: Antenna Pattern by Ground Receivers

- Measurements confirm simulated reference pattern
- Within requirements

Transmit pattern only
Relative accuracy $< \pm 0.1\text{dB}$
First Sequential Ground Receiver Acquisition

- Direct measurement of the satellite separation in along track → Pursuit monostatic phase

3s azimuth separation ≈ 20 km

- 1st absolute comparative measurement of transmitted power → <0.5dB difference TDX-1 – TSX-1
THE END

Questions?

TSX-1 DLR logo experiment: Oberpfaffenhofen, Bayern, Germany (19th June 2008)