DLR Portal
Home|Sitemap|Contact|Accessibility Imprint and terms of use Privacy Cookies & Tracking |Deutsch
You are here: Home:Departments:Satellite SAR-Systems:Calibration
Advanced Search
News
Institute
Departments
SAR-Technology
Radar Concepts
Satellite SAR-Systems
Systems Engineering
Mission Engineering
TerraSAR-X/TanDEM-X Mission Manager
Radar Science
Calibration
Reconnaissance and Security
Compact Test Range
Projects
TanDEM-X Science
Tandem-L Science
Helmholtz-Allianz
Publications
Awards
Jobs
Offers for Internships, Bachelor, Master and PhD Theses
Archive - Conferences
Software
How to find us

Calibration

 

SAR System Calibration  

The calibration of spaceborne imaging radar systems is the main focus of the Calibration Group and has been an important research field in the Institute for over 25 years. An essential task of calibrating these Synthetic Aperture Radar (SAR) systems is to establish the relationship between radar measurements and geophysical parameters. This includes the geolocation of the SAR image, its backscattering characteristics (in amplitude and phase), and polarimetric information. Keeping up with the growing demand for accurate SAR data products on the one hand, and the growing complexity of innovative spaceborne SAR systems (with a multitude of different imaging beams and novel operation modes like TOPS (Terrain Observation by Progressive Scans), sliding spotlight, etc.) on the other, see Figure 1, requires sophisticated concepts, precise algorithms and adequate facilities, see Figure 2, in order to efficiently calibrate such complex spaceborne SAR systems.

 

Figure 1: Motivation for new calibration concepts.

 

Figure 2:   Calibration devices of the DLR SAR calibration center: remote-controlled transponder in the laboratory (left) and deployed in the calibration field (center), and remote-controlled corner reflector (right) at one of the permanent sites within our calibration field covering a total area of 120 km x 40 km.

 

Calibration Concepts / Procedures

Modern SAR systems like TerraSAR-X and Sentinel-1 are based on an active phased array antenna employing several hundred transmit/receive modules, offering electronic beam steering capabilities and, thus, a multitude of different SAR modes. Calibrating these modes by measuring each of the thousand beams separately (as done for ERS-1/2 or ENVISAT/ASAR), is not feasible. Thus, an efficient concept was developed, has been applied for calibrating TerraSAR X, TanDEM X and Sentinel-1, and is currently being expanded for low frequency SAR systems like Tandem-L. The goal of this concept is to reduce the measurement effort in space as much as possible by shifting most of the antenna characterization to pre-launch activities. In order to achieve this aim, two key elements should be available:

  • an accurate internal calibration facility allowing for drift compensation and for characterizing individual Transmit/Receiver Modules (TRMs) in-flight by the so called PN-gating method also known as PCC technique, and
  • a precise antenna model for providing the thousands of reference patterns and allowing accurate pointing determination. For this purpose we have developed and established our antenna model approach.

Applying these key elements, relative radiometric calibration of all SAR data products can be performed without any measurements against point targets. Furthermore, the expected gain and phase offset between different beam configurations can be derived from the antenna model. Therefore absolute radiometric calibration, i.e. the measurement of the whole SAR system against reference targets is not only independent of the target position within the swath, but also independent of the beam being operated. Consequently, only one absolute calibration factor has to be derived from deployed reference targets. This factor is valid for all operational conditions.

Establishing this strategy, only a small subset of suitable beams has to be effectively measured in-flight instead of thousands of possible antenna beams separately. Thus, most of the calibration effort is shifted from space to ground, i.e. the in-orbit calibration duration is minimized by more detailed pre-launch characterization on ground and modelling of the antenna. Hence, the tight schedule of commissioning a high performance spaceborne SAR system can be ensured and long term system monitoring can be effectively performed during the lifetime of the instrument.

Taking all aspects mentioned before into account, the realization of the calibration concept is shown here: Read More.

 

DLR SAR Calibration Center

The DLR SAR calibration center (see Figure 2) is a facility for efficient and robust SAR system calibration – supporting extended field campaigns – for multimode SAR missions as successfully executed for TerraSAR-X and TanDEM-X as well as for Sentinel-1A and Sentinel-1B.
It is well equipped with a large number of accurate passive and active reference targets and includes several analysis and evaluation tools based on precise algorithms. Within an area of 120 km x 40 km, 37 targets are deployed and maintained in South Germany at different sites. Six of these test sites are remotely controlled and operated from Oberpfaffenhofen. Read More.

 

Projects

In calibration  projects  for  ERS-1/2, SIR-C/X-SAR, SRTM, ENVISAT/ASAR, ALOS-1/2 up to on-going missions like TerraSAR-X, TanDEM-X and Sentinel-1A/B, the Microwaves and Radar Institute has built up more than 25 years of expertise in end-to-end SAR system calibration including extended field campaigns and has proven capabilities to manage large and highly complex projects. Read More.

 

History / DLR Calibration Group / About Us

Calibration of SAR systems is a traditional R&D field in the DLR Microwave and Radar Institute. During the last 25 years, not only the demand on high accuracy spaceborne SAR data products has increased but also the level of complexity in the SAR instrument architecture and calibration.
Since the late 1980s. Read More.

 

Partners

The Calibration Group has longstanding collaborations with various partners from industry, space agencies and science. Among others, these are:

  • European Space Agency: ESTEC (Netherlands) and ESRIN (Italy)
  • Canadian Space Agency (Canada)
  • Korean Aerospace Research Institute (South Korea)
  • Institute Nacional de Técnica (INTA, Spain)
  • Airbus Defence and Space
  • Thales Alenia Space (Italy)
  • OHB
  • ZARGES
  • Siemens

 

Contact
Dr.-Ing. Marco Schwerdt
Head of the Calibration Group

Microwaves and Radar Institute

Satellite SAR Systems

Oberpfaffenhofen-Wessling

Tel.: +49 8153 28-3533

Fax: +49 8153 28-1449
Read more about
SAR System Calibration
Concepts and Procedures
SAR Calibration Facility
Projects
About Us
Copyright © 2022 German Aerospace Center (DLR). All rights reserved.