Precise Time Facility (PTF) for Galileo IOV

Dr. Stefan Bedrich, Kayser-Threde GmbH, Munich

Workshop „Time & Frequency Services with Galileo“
5-6 Dec 2005, Herrsching, Germany
PTF = Galileo‘s Time Reference on Ground

- Core task of PTF: navigation timekeeping
 - critical function for fulfilling the navigation mission
 - needed for accurate satellite orbit determination / satellite clock synchronisation

⇒ realized by Master Clock (= Active H-Maser, AHM), steered to local Caesium clock ensemble; output is Galileo System Time (GST)

⇒ GST is steered to TAI (UTC) by applying frequency corrections (~1/day) determined by external Galileo Time Service Provider (GTSP)

- Galileo System Time (GST) specification:
 - Precision of GST - UTC Offset ("GST uncertainty"): < 28 ns, 2σ (95% confidence level)
 - Accuracy of GST - UTC Offset ("GST limits"): < 50 ns, 2σ (95% of any yearly interval)
 - GST Frequency Offset (normalized to UTC): < 5.5 E-14 (over 1 day)
 - GST Autonomy: accumulation of less than 28 ns (2σ) uncertainty over 10 days (95% confidence level)
GST Stability Specification

![Graph showing GST stability over time with different markers for 1 hour, 1 day, and 1 month.](image)

- **CS**
- **S-PHM**
- **S-RAFS**
- **G-H-MASER**

Markers indicate:
- 1.5 E-13
- 2.0 E-14
- 5.0 E-15
- 2.0 E-15 Steered H-maser
PTF Core Function: GST Generation

[Diagram showing the components and connections of the Precise Time Facility (PTF) for Galileo IOV, including

- Clocks subsystem
- Local measurement subsystem
- GST realization subsystem
- GST processing subsystem

Key components:
- Multiplexer
- Time interval counter
- Phase micro stepper
- Pulse distribution amplifier
- RF distribution amplifier
- 1pps
- Cs
- AHM
- 10MHz
- GST 1pps
- GST 10 MHz

Connections:
- Galileo (GSS) Receiver
- TWSTFT Modem
- Ensemble time algorithm
- GST steering algorithm
- GST to UTC correction
- Clock, Ensemble
- Steering correction

Business Unit: Space Technology]
PTF Second Function: GST/GPS Time Offset (GGTO) Determination

- GPS time receiver at PTF
 - Raw GST - GPST data
 - GPS data processing function
 - Pre-processed GST-GPST

- TWSTFT modem at PTF
 - Results of TWSTFT between PTF and USNO
 - TWSTFT data processing function
 - Raw GST-GPST data (link with USNO)

- GGTO prediction function
 - Computed GGTO parameter and quality characteristics

- GGTO verification function
 - Verified GGTO parameter
 - GGTO quality flag

- Galileo Control Center
 - UTC(USNO) - GPS Time (data from USNO)
 - Computed GGTO parameter and quality characteristics from USNO/GPS side
PTF Block Diagram

- **PTF Block Diagram**
 - **Clock Room**
 - 4 x Cs UPS
 - 2 x Active H-Maser clock (ON EFOS-C)
 - 2 x AHM UPS
- **Clock Measurement Subsystem**
 - Multi-Channel Phase Comparator
 - 2 x Active H-Maser clock
- **Monitoring & Control Subsystem**
 - Time Interval Counter (SR620)
- **Time Signal Multiplexer**
 - 4 x 10 MHz Buffer
- **Switch Matrix**
 - 2 x 10 MHz Buffer (1..2)
- **GPS Time Receiver**
- **TwSTFT Equipment**
- **Equipment Room**
- **Operations Room**

System Synchronization
- 4 x 10 MHz (1..4)
- 2 x 1-pps (1..4)
- 2 x 10 MHz (5..6)
- 2 x 1-pps (5..6)
- 2 x 1-pps (9..10)
- 10 MHz (7)
- 10 MHz (8)
- 10 MHz (11..12)
- 1-pps 10 MHz
- 1-pps Ontime
- 10 MHz

Equipment
- **Galileo Sensor Station (GSS)**
- **Operations Room**
- **Site LAN**
- **LAN**
- **10 MHz**
- **1-pps**

Data Archiving
- **2 x RS232/LAN (1..2)**
- **2 x GPIB/LAN (1..2)**
- **OSPF**
- **SPF**
- **GACF**
- **GCF**
- **MSF**
- **PTF(2)**

TCO
- **Galileo System Clocks Data**
- **USNO's GPS/GST Time Offset**
- **GPS Time Receiver**
- **TwSTFT Equipment**

Reliability
- **4 x Cs UPS**
- **2 x AHM UPS**

Environmental Monitoring
- **Temp., Hum., H-Field**

Network
- **Site LAN**
- **GACF Site LAN**
- **Site LAN**

Time Reference
- **GPS Time Receiver**
- **TwSTFT Equipment**

Clock Synchronization
- **2 x 1-pps (1..2)**
- **2 x 10 MHz (11..12)**
- **10 MHz (8)**

Data Transmission
- **2 x RS232/LAN (1..2)**
- **2 x GPIB/LAN (1..2)**
- **OSPF**
- **SPF**
- **GACF**

Processing
- **GST/GGTO Processing Subsystem**
- **Galileo Realisation Subsystem**
- **Redundancy Equipm. (Hot Spares)**
- **T&F Data Transfer Subsystem**

Operations
- **Galileo Sensor Station (GSS)**
- **Operations Room**
- **Site LAN**
- **LAN**
- **10 MHz**
- **1-pps**

Networks
- **Site LAN**
- **GACF Site LAN**
- **Site LAN**
- **OSPF**
- **SPF**
- **GACF**

Stabilization
- **1-pps 10 MHz**

Monitoring
- **Monitoring & Control Subsystem**
- **Equipment Room**
- **Operations Room**
- **Site LAN**
- **LAN**
- **10 MHz**
- **1-pps**
PTF Physical Implementation Steps

In-Orbit Verification (IOV) after 2007 (~ 4 S/C in orbit, ~ 15 worldwide signal observation sites):
- one core PTF shall be operational („Master PTF“)
- planned to be located at Galileo Ground Control Centre (GCC)
- hot redundant backup PTF („Slave PTF“) planned to be located in European UTC(k) laboratory

⇒ same autonomy and performance specification as in final configuration (FOC, see below)
⇒ relaxed requirements w.r.t. redundancy and UTC steering (GTSP prototype in place)
⇒ architecture shall allow immediate extension to FOC configuration

Final Operational Capability (FOC) after 2010 (full constellation and ground segment deployed):
- two GCC will be available, two fully redundant, identical (w.r.t. performance) and synchronized PTF's shall be operated (master/slave concept)
⇒ GTSP fully in place and performing to specification
PTF Operations at IOV

- GST short/mid-term performance in IOV will be comparable to FOC
- but weaker redundancy concept within each PTF (1 AHM master clock, 3 Caesium clocks, 1 Phase Stepper, each with one hot back-up)
- test procedures for steering of the Slave to the Master PTF and switching from the Master to the Slave PTF have still to be defined (will have major effect on S/C orbit determination process, i.e. OSPF activity)
New Concept of Scalable PTF

- Parallel independent H/W chains for each available master clock

- Decision on actual master clock taken on higher level (i.e. by OSPF process)
Summary and Conclusions

- PTF for Galileo IOV will be realized by competent European expert team
- Clear concept for GST to perform according to specification during IOV
- Clear concept to determine and predict GGTO
- Flexible architecture which allows immediate upgrade to FOC configuration

- Identified risk areas: redundancy; switching
- Solution: new concept of independent H/W chains for each master clock
 - less tense synchronization in H/W (only some tens of ns) required,
 - determination of all clock offsets in S/W possible,
 - additional performance check and master authority at OSPF (~ 1 ns level)