Global Climate Change and Aviation - The Challenge

David Lee, Centre for Air Transport and the Environment at Manchester Metropolitan University

Ulrike Lohmann, Institute for Atmospheric and Climate Science at ETH Zurich and Ulrich Schumann, DLR Institute of Atmospheric Physics Oberpfaffenhofen
Global warming is a reality

- Strongest CO$_2$ concentrations increase since 650,000 years
- 0.75°C warmer globally than a century ago
- Human induced radiative forcing of about 1.6 W/m2
- Most of the global warming of the past half-century is due to increases in greenhouse gases
- The future climate depends on human choices about emissions
CO\textsubscript{2} concentrations increase: unprecedented in the last 10,000 (actually 650,000) years

- Increased Growth rates of Greenhouse gas concentrations (Carbon Dioxide, Methane, Nitrous Oxide) during the last 50 years
- Carbon Dioxide (CO\textsubscript{2}) increases caused mainly by burning fossil fuels
Global mean surface temperature: 0.75°C warmer than it was a century ago

(IPCC, Fig. 3.2)
Large Human Contributions to Radiative Forcing

<table>
<thead>
<tr>
<th>RF Terms</th>
<th>RF values (W m⁻²)</th>
<th>Spatial scale</th>
<th>LOSU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-lived greenhouse gases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>1.66 [1.49 to 1.83]</td>
<td>Global</td>
<td>High</td>
</tr>
<tr>
<td>N₂O</td>
<td>0.48 [0.43 to 0.53]</td>
<td>Global</td>
<td>High</td>
</tr>
<tr>
<td>CH₄</td>
<td>0.16 [0.14 to 0.18]</td>
<td>Global</td>
<td>High</td>
</tr>
<tr>
<td>Halocarbons</td>
<td>0.34 [0.31 to 0.37]</td>
<td>Global</td>
<td>High</td>
</tr>
<tr>
<td>Ozone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratospheric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropospheric</td>
<td>-0.05 [-0.15 to 0.05]</td>
<td>Continental</td>
<td>Med</td>
</tr>
<tr>
<td>Total</td>
<td>0.35 [0.25 to 0.65]</td>
<td>Continental</td>
<td>Med</td>
</tr>
<tr>
<td>Surface albedo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black carbon on snow</td>
<td>-0.2 [-0.4 to 0.0]</td>
<td>Local to</td>
<td>Med</td>
</tr>
<tr>
<td>Total</td>
<td>0.1 [0.0 to 0.2]</td>
<td>continental</td>
<td>Med</td>
</tr>
<tr>
<td>Total Aerosol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct effect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloud albedo effect</td>
<td>-0.5 [-0.9 to -0.1]</td>
<td>Continental</td>
<td>Med</td>
</tr>
<tr>
<td>Total</td>
<td>-0.7 [-1.8 to -0.3]</td>
<td>Continental</td>
<td>Low</td>
</tr>
<tr>
<td>Linear contrails</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar irradiance</td>
<td>0.01 [0.003 to 0.03]</td>
<td>Continental</td>
<td>Low</td>
</tr>
<tr>
<td>Total net anthropogenic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.6 [0.6 to 2.4]</td>
<td>Global</td>
<td>Low</td>
</tr>
</tbody>
</table>

Aviation:
+ 1.6 W m⁻²

Total about 1.6 W m⁻²
Very likely (>90%) that most of the global warming of the past half-century is due to increases in greenhouse gases.
The future climate depends on human choices about emissions

Growth to 600 – 1550 ppmv CO₂ equiv (B1 – A1FI) corresponds to +1.8°C to +4°C [likely 2.4-6.4°C] by 2100
Climate Impact of Aviation

Global aviation contributes to climate change by emissions of carbon dioxide (CO$_2$), nitrogen oxides (NO$_x$), water vapour, particles, contrails and cirrus changes.

Carbon dioxide is the most important greenhouse gas. Its effect is independent of the altitude at which the emission occurs.

Nitrogen oxides from aviation at subsonic cruise altitudes enhance ozone formation and reduce methane; both are greenhouse gases.

Water vapour and particles (soot etc.) emitted at altitudes near the tropopause can induce contrails and cirrus clouds, likely enhancing the greenhouse effect.
Global distribution of aviation emissions

Aviation Fuel: 169 - 213 Tg/a (about 2 % of all CO$_2$-emissions)
NO$_x$: 2.6 - 3 Tg(NO$_2$)/a (about 1.5 % of all NO$_x$-emissions)

(AERO2K, 2005)
About 40% of all emissions occur above the tropopause

Vertical Distribution of Aircraft Emissions and Tropopause

(AERO2K, 2005)
Aviation increases Nitrogen Oxides (NOx), Ozone (O3) and Hydroxyl Radicals (OH) concentrations in Upper Troposphere.

CH$_4$ + OH \rightarrow CO + 2 H$_2$O
Contrails from cruising aircraft and soot cause cloud changes: we see line-shaped contrails evolving into “contrail-cirrus”.

Cirrus enhances the greenhouse effect. In addition, soot may cause “soot-cirrus”.
Contrails and soot from cruising aircraft cause cloud changes which mostly contribute to warming

Contrails are caused by water vapor emissions from aircraft flying in cold and humid air masses

Soot and other particles change contrails and cirrus properties

Line-shaped contrails are detectable from space

The total cirrus change is estimated with still large uncertainty

Cirrus and contrails heat during night

They heat or cool during day
Radiative Forcing and Temperature Change induced by Aviation

Global aviation contributed to Radiative Forcing so far about 0.05 W/m².

These are about 3 % of the total (about 1.6 W/m²) radiative forcing from all anthropogenic effects.

The largest uncertainty comes from aviation contributions to changes in cirrus clouds, which are not included in the total therefore.

Including the presently know uncertainties, the aviation contribution is estimated within the range 2 to 8 %.

Global aviation contributed to the observed global warming of 0.7°C about 0.02-0.03°C (ca. 3-4 %), so far.
Radiative Forcing until 2000 from Global Aviation

(Sausen et al., TRADEOFF, 2005)
Trends

Aviation fuel consumption (CO₂ emissions) grew globally by 2-3 % per year from 1990 – 2004.

Aviation NOx emissions grew faster

Further growth of global fuel consumption and global emissions of CO₂ and NOx is to be expected.

Scenarios of civil aviation CO₂ emissions in 2050 show a potential increase by factors 3.3 - 5

If aviation emissions continue to grow while other emissions get reduced, the relative importance of aviation contributions grows
Trends

1991-2004:

- Passenger-km: 4.6 %/a
- Freight-km: 6.4 %/a
- Kerosene: 2.1 %/a

(Schumann, 2007)
In spite of considerable improvements, fuel consumptions is still growing. NOx emissions increased more strongly than fuel consumption.
Future Emission Scenarios for CO₂ from all sources

A1B: rapid economic growth, balance across all sources, fast intro. of new technologies, strong globalisation

B2: moderate economic growth, diverse technological change, more oriented towards environmental protection, focus on regional levels
Scenarios: Aviation CO₂ increases in absolute and relative measures

Increase 2005 - 2050:
FAST-A1: factor 4.9
FAST-B2: factor 3.3
Global aviation contributed to the observed global warming of 0.7°C about 0.02-0.03°C (~3-4 %), so far.

Results depend on scenario and individual RF-values. Both have large uncertainties.

2007: 0.02-0.03 K
2060: 0.1 K?
Conclusions

Global warming is observed and largely caused by human drivers.
Climate protection requires reductions of the total greenhouse gas emissions, including those from aviation.
The aviation share in CO₂ emissions is presently about 2%.
Hence, increased fuel efficiency is important (for several reasons).
In addition, cruising aircraft impact climate by NOx and contrails.
The aviation share in radiative forcing is presently 3% (range 2-8%).
Scenarios of aviation CO₂ emissions show potential increase by factors 3.3 – 5 until 2050.
NOx and Contrails offer special chances for climate mitigation.
Largest uncertainty and possibly largest contribution from contrail cirrus.
The contrail issue needs higher attention by ACARE and others.