DLR Portal
Home
|
Sitemap
|
Contact
|
Accessibility
Imprint and terms of use
Privacy
Cookies & Tracking
|
Deutsch
You are here:
Home
:
Instruments and Methods
:
Models
Institute
Departments
Research Groups
Matrix Groups
Research Areas
Instruments and Methods
Platforms
Instruments
Models
Projects
Publications & Media
Training and Vacancies
Events
Global models
Global models of the atmosphere are traditionally used in weather forecasting and climate research. Global numerical weather prediction (NWP) models predict the temporal development of the state of the atmosphere within a period of one or two weeks on the basis of an accurate as possible analysis of the initial conditions. The spatial resolution can be as high as the available computer capacity permits.
Full article
ECHAM
The global climate model ECHAM was developed by the Max Planck Institute for Meteorology in Hamburg/Germany and by the University of Hamburg. At present the model version 5 is mainly used at the institute.
Full article
EMAC
The numerical global atmosphere-chemistry model EMAC (ECHAM/MESSy Atmospheric Chemistry) is a modular global climate and chemistry simulation system with sub-models for the calculation of processes in the troposphere and the middle atmosphere, their interaction with the ocean and land surfaces, and of anthropogenic influences.
Full article
ICON
The dynamic core of the ICON (icosahedral non-hydrostatic general circulation model) is a joint of the Max Planck Institute (MPI) for Meteorology and the German Weather Service. The climate version of ICON, developed at MPI for Meteorology, combines this new dynamic core with the physics approaches of the climate model ECHAM. ICON should become the future German climate model.
Full article
Model evaluation
Full article
ESMValTool
The Earth System Model Validation Tool (ESMValTool) is a diagnostics tool for the routine evaluation of Earth System Models (ESMs) with observations. It tests the representation of climatological means, trends and variability of essential climate variables (ECVs) in the models on a range of temporal and spatial scales and additionally includes process-oriented evaluation.
Full article
Further models
Full article
Mesoscale models
Mesoscale models are numerical tools which resolve atmospheric processes of spatial scales between 2 and 1000 km. They solve the conservation equations of mass, momentum, internal energy and diverse air constituents with different physical approximations.
Full article
Microscale models
Microscale models of the atmosphere are designed to simulate small-scale flow systems (e.g. turbulence, vortices, air flows over obstacles) with a horizontal length scale ranging between a few meters and some 100 m.
Full article
Sound propagation models
The Institute of Atmospheric Physics develops and operates advanced sound propagation models. In combination with meteorological mesoscale and microscale models they describe the system of atmosphere, topography and sound waves in a consistent manner.
Full article
Radiative transfer models
Various numerical models are used at the institute to study radiative transfer in the atmosphere and the interaction between radiation and clouds or aerosol. Our workhorse is the program package libRadtran (Library for Radiative Transfer), which already includes a selection of different methods.
Full article
Contrail Cirrus Prediction Model (CoCiP)
The "Contrail Cirrus Prediction Tool" CoCiP has been developed to simulate contrail cirrus resulting from a single flight as well as from a fleet of cruising aircraft, flight by flight, regionally or globally. The method predicts contrail cirrus for given air traffic and weather prediction data.
Full article
Copyright © 2023 German Aerospace Center (DLR). All rights reserved.