Shape model and reference system definition of 67P/Churyumov-Gerasimenko from stereo-photogrammetric analysis of Rosetta/OSIRIS image data


(1): Institute of Planetary Research, German Aerospace Center (DLR), Rutherfordstr.2, 12489 Berlin, Germany (Frank.Preusker@dlr.de) (2) Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany.

In August/September 2014 the OSIRIS camera system [1] onboard ESA’s Rosetta spacecraft has been acquired more than 200 OSIRIS NAC images (SHAP4S image sequence) with about 1 m image resolution of comet 67P/Churyumov-Gerasimenko (67P/C-G). We applied stereo-photogrammetric (SPG) methods and derived a three-dimensional representation of the very irregular shaped nucleus of the comet [2]. Here, we achieved a SPG shape model at 2 m lateral sampling and a typical vertical accuracy at the decimeter scale (see Fig. 1). Furthermore, we used SPG methods to analyze the rotational elements of 67P/C-G. Based on the determined spin pole orientation and spin rate we defined the reference frame of 67P/C-G using fixed landmark coordinates [2]. Because of the illumination conditions during observation period, the SPG SHAP4S shape model is limited to the northern hemisphere and low southern latitudes [3,4]. We will present recent results and additional views at the conference.

Acknowledgements

OSIRIS was built by a consortium of the Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany, CISAS - University of Padova, Italy, the Laboratoire d’Astrophysique de Marseille, France, the Instituto de Astrofísica de Andalucia, CSIC, Granada, Spain, the Research and Scientific Support Department of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Técnica Aeroespacial, Madrid, Spain, the Universidad Politécnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut für Datentechnik und Kommunikationsnetze der Technischen Universität Braunschweig, Germany. The support of the national funding agencies of Germany (DLR), France (CNES), Italy (ASI), Spain (MEC), Sweden (SNSB), and the ESA Technical Directorate is gratefully acknowledged.

References

Figure 1: Global view of the SPG SHAP4S shape model of C-G [2].