Abstract for 11th Low Cost Planetary Missions Conference
June 9-11, 2015, Berlin, Germany

Small Carry-on Impactor of Hayabusa2

Saiki, T., JAXA; Imamura, H., JAXA; Sawada, H., Jaxa; Arakawa, M., Kobe University; Wada, K., Chiba Institute of Technology; SCI Development Team

A Japanese spacecraft, Hayabusa2 is a current mission of JAXA and it was successfully launched on Dec. 3, 2014. Hayabusa2 is a similar sample return mission to Hayabusa, however the type of the target asteroid is different from that of Hayabusa. Asteroid Itokawa, explored by Hayabusa is a rock-rich S-type one. Hayabusa2 will go to a C-type asteroid. Both C-type and S-type asteroids consist of rocks, but C-type asteroids are considered to have organic and water materials.

The observations by Hayabusa discovered that Itokawa was rubble-pile body with the macro-porosity. No direct observational data as for their internal structures and sub-surface materials were available, however. One of the most important scientific objectives of Hayabusa2 is to investigate chemical and physical properties of the internal materials and structures. In order to achieve this objective, the SCI is required to remove the surface regolith and create an artificial crater on the surface of the asteroid. Different from other impact missions, Hayabusa2 can make a detailed observation of the resultant crater after the impact. Observing the size of the crater is very important to investigate the physical properties of the asteroid. Additionally, Hayabusa2 will try to touchdown near the crater to get the fresh material of the asteroid.

It is very difficult to create a meaningful crater on the asteroid. High kinetic energy (i.e. about 2km/s impact speed and 2kg impact mass) is required to make a crater, but the high speed is difficult to realize. The famous impact mission, Deep Impact was the direct impact mission, which used the interplanetary velocity for the impact speed. Consequently, the impact energy became very high. On the other hand, SCI of Hayabusa2 is a carry-on type impactor and it should accelerate itself after the separation from the mother spacecraft. Therefore, how to accelerate the impact body is a big challenge of SCI. The traditional acceleration devices are difficult to hit the asteroid without a guidance system because the acceleration distance is large. To overcome this difficulty, the powerful explosive is use in SCI. The special type of shaped charge makes it possible to accelerate the impact head in a very short amount of time (less than 1 millisecond) and it becomes possible to crash into the asteroid.

A lot of tests were conducted during the development period. The overview of the small carry-on impactor system and the results of the development tests will be presented in the meeting.