Power Amplifiers for Ku- and Ka-band
VSAT Applications

Presentation at DLR Workshop "Satellitenkommunikation in Deutschland"
March 27-28th, 2003 at DLR in Köln-Porz

Klaus Beilenhoff, Alexandre Bessemoulin,
Marc Camiade, and Pierre Quentin
United Monolithic Semiconductors S.A.S
Route Departementale 128 - BP 46
91401 Orsay, France
Tel.: +33 1 69 33 02 00
FAX: +33 1 69 33 02 92
Email: klaus.beilenhoff@ums-gaas.com
Outline

- Introduction of United Monolithic Semiconductors (UMS)
- Ku- and Ka-band high power amplifiers for VSAT applications
 - Motivation
 - Current developments of Ku- and Ka-band HPAs at UMS
 - Packaging concepts for VSAT
- ESA Contract: Low cost 30GHz SSPA
- Conclusions
UMS Company Structure

EADS Deutschland GmbH

THALES (former Thomson-CSF)

50%

UMS Holding S.A.S. (Orsay - France)

100%

UMS GmbH (Germany)

UMS S.A.S (France)

100%

UMS Sales Office (USA)

50%

EADS Deutschland GmbH

All information contained in this document remains the sole and exclusive property of UNITED MONOLITHIC SEMICONDUCTORS and shall not be disclosed by the recipient to third party without the prior consent of UNITED MONOLITHIC SEMICONDUCTORS.
UMS Company Overview

UMS
United Monolithic Semiconductors

- UMS is an independent supplier of GaAs MMICs
- UMS is an open GaAs Foundry
- UMS offers >40 years experience from RF to mm-wave applications...
- … and the largest choice of GaAs leading edge technologies
- UMS has built its success with mm-wave MMICs in the Telecom market
- UMS provides large production quantities on industrial lines
- UMS delivers guaranteed quality products, worldwide
Outline

- Introduction of United Monolithic Semiconductors (UMS)
- Ku- and Ka-band high power amplifiers for VSAT applications
 - Motivation
 - Current developments of Ku- and Ka-band HPAs at UMS
 - Packaging concepts for VSAT
- ESA Contract: Low cost 30GHz SSPA
- Conclusions
New microwave and mm-wave applications for the telecommunication and automotive market:

- ku and ka-band VSAT
- 24 GHz short range radar
- others

How to solve?

⇒ Success depends on final cost for RF module

The Chicken - Egg Problem
Module Cost

Point-to-multipoint transceiver module:

Cost for RF modules:
- MMICs (active devices) 30-35%
- other materials 5%
- package / housing 15%
- assembly / manufacturing 20%
- testing and tuning 30-25%

- Material
 - package / housing
 - substrate
 - MMICs and passive devices
 - others

- Assembly / manufacturing
 - die attach
 - wire bonding

- Testing and tuning
 - measurements
 - tuning
 - burn-in

Courtesy of Thales Microwave
26 GHz PTM transceiver module
Motivation

What limits market introduction of mm-wave point-to-multipoint systems?

- Cost for user: equipment and installation
 - ownership model: was too expensive
 - leasing / fee model requires low investment costs
- Content to be distributed: was not available!
 - originally video-on-demand
 - today: broadband / fast internet
- Competition:
 - ADSL
 - Cable TV
 - MMDS
 - VSAT

VSAT power lineup have to be very cheap or will never happen!
VSAT Ku and Ka-band

Frequency allocation for VSAT in Ku and Ka-band:

- VSAT frequencies in Ku-band:
 - Transmit (ground segment): 14.00 – 14.50 GHz
 - Receive (ground segment): 10.95 – 12.75 GHz
- VSAT frequencies in Ka-band:
 - Transmit (ground segment): 29.50 – 30.00 GHz
 - Receive (ground segment): 17.70 – 20.20 GHz

KEY component for VSAT applications is the high power amplifier (HPA)

- Classes of power required for both frequency bands:
 - 1 Watt power amplifier (+30dBm)
 - 2 Watt power amplifier (+33dBm)
 - 4 Watt power amplifier (+36dBm)
- HPAs to be operated in saturation, but are more and more used near P_{-1}dB, for linearity raisons (side-lobe re-growth)
VSAT Ku-band

- CHA6042 - PPH25x (3.3mm²): engineering samples
 - $V_{ds} = 9$ Volt / $I_{ds} = 1.0$ A
 - 13.5 - 17 GHz
 - $G_{linear} > 30$ dB
 - $P_{-1dB} > 31$ dBm
- **CHA4042 – PPH25 (2.1mm²):** engineering samples
 - $V_{ds} = 5$ Volt / $I_{ds} = 250$mA
 - $G_{linear} = 15$ dB
 - $P_{-1dB} > 25$ dBm

![Graph showing Gain (dB) and Output power P_{-1dB} vs Frequency (GHz)]
VSAT Ka-band

- Pa-PO9981 – PPH25 (2.47 mm²) : engineering samples
 - $V_{ds} = 6$ Volt / $I_{ds} = 700$ mA
 - 28-35 GHz
 - $G_{\text{linear}} = 18$ dB
 - $P_{-1\text{dB}} > 28$ dBm

![Image of the VSAT Ka-band circuit](image_url)

![Graph of Gain (dB) and Output Power $P_{-1\text{dB}}$ vs Frequency (GHz)](graph_url)

PA-PO9981: $V_d=6V, I_d=700$ mA
HPA Ka-band

Raytheon RMPA29200 29-31GHz
32.5dBm, 12mm²

Fujitsu FMM 5803 X 27-32 GHz
30dBm, 7mm²

UMS CHA5093 28-35GHz
29dBm, 7.7mm²

TriQuint TGA9070 23-29GHz
30dBm, 12.3mm²

UMS PA-PO9981 28-35GHz
29dBm, 2.5mm²

UMS
United Monolithic Semiconductors
DCA ⇔ SMD

DCA = Direct Chip Attach

Packaged MMICs (e.g. SMD)

For volume applications in the telecom and automotive business, production cost must be significantly reduced!

- low cost assembly on standard manufacturing lines
- use of pre-tested components

Courtesy of Thales Microwave
Flange Mount Package

- Standard packaging technology for Ku-band HPA
 - ceramic layer with leads mounted on Cu-composite heat sink
 - MMIC soldered (AuSn) directly on heat sink
 - capacitors incorporated to avoid oscillations
 - standard bondwires can be used

- Advantages:
 - good electrical performance for Ku-band applications
 - excellent heat transfer due to Cu-composite base
 - well know and proven concept (qualified by system houses)

- Disadvantages:
 - volume testing difficult to perform
 - high cost for package (> 10 USD) and assembly (manual lead soldering)

Courtesy of Stratedge
Plastic QFN Package

Example of QFN package

Leadless Plastic Chip Carrier for $f < 20$ GHz
CHA2066 in QFN package

CHA2066 (self-biased low noise amplifier) in ASAT LPCC package

- Results: good performance shown up to 18 GHz
- Improvement possible with modified motherboard (f < 32 GHz)
Outline

- Introduction of United Monolithic Semiconductors (UMS)
- Ku- and Ka-band high power amplifiers for VSAT applications
 - Motivation
 - Current developments of Ku- and Ka-band HPAs at UMS
 - Packaging concepts for VSAT
- ESA Contract: Low cost 30GHz SSPA
- Conclusions
ESA Contract: 30GHz SSPA

ESA (AO/1-4166/02/NL/US): Low Cost 30GHz SSPA Development:

- Development of low-cost packaged SSPAs for VSAT at Ka-band
 - 1-Watt output power class
 - 2-Watt output power class

- Consortium
 - UMS, European manufacturer of millimetre wave MMICs
 - TNO-FEL, design centre of microwave and millimetre wave MMICs
 - HYMEC, volume assembly and manufacturing capabilities
Project Flow and Organisation

Phase 1: SSPA module definition and prototyping
- Technology assessment
- MMIC design
- Package
- Processing
- Package assembly
- Test

Phase 2: Manufacturing of preprod. batch
- MMIC redesign
- Package
- Processing
- Package assembly
- Final test

Management and commercial evaluation

project starts in 04/03
duration: 22 months
Conclusions

- United Monolithic Semiconductors is the leading European source for microwave and mm-wave ICs
- VSAT is a volume market requiring low cost components / materials and assembly methods
- UMS has developed several MMICs for these applications
 - HPA for Ku-band VSAT (e.g. CHA6042)
 - HPA for Ka-band VSAT (e.g. PO-PA9981)
 - Size reduction due to advanced design concepts leads to lower cost
- Packaging allows to simplify the assembly and to use pre-tested components
 - Flange mount package with Cu-composite heat sink
 - QFN package
- ESA Contract: Low Cost 30GHz SSPA
Thank you for your attention!