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Abstract— For the evaluation of grasp quality, different mea-
sures have been proposed that are based on wrench spaces.
Almost all of them have drawbacks that derive from the non-
uniformity of the wrench space, composed of force and torque
dimensions. Moreover, many of these approaches are computa-
tionally expensive.

In this paper, we address the problem of choosing a proper
task wrench space to overcome the problems of the non-uniform
wrench space and show how to integrate it in a well-known, high
precision and extremely fast computable grasp quality measure.

I. I NTRODUCTION

With the development of flexible and highly integrated
dexterous gripping devices (e.g. the DLR Hands I and II),
the research on grasp and manipulation analysis and planning
can be applied to the real world. So the need for efficient and
implementable methods to perform these analysis and planning
tasks increases.

Fig. 1. The DLR Hand II executing a special grasping task

One main topic in this field is the static analysis of forces
and torques that can be applied to an object through grasp
contacts. The evaluation of the efficiency of a grasp to coun-
teract disturbances in order to keep the object firmly fixed in
the gripper is the next important research topic.

A basic quality criterion for a grasp is the force closure
property, first proposed for grasping applications by Laksh-
minarayana [5]. Efficient tests for this property have been
developed using different models, like the grasp matrix or the
grasp wrench spaces [1], [3], [8]. Also, many approaches deal
with the construction of a force closure grasp.

The force closure property, however, is only a minimal
quality requirement for a grasp. It is more relevant, how
efficiently a grasp can compensate for arbitrary disturbances
or balance a special set of disturbances that is expected when
executing a desired task. To quantify this efficiency of a grasp,
the concept of wrench spaces can be used. The set of all
wrenches that can be applied to the object through the grasp
contacts is called theGrasp Wrench Space (GWS).

A commonly used and efficient way to approximate the
GWS is to calculate the convex hull over the discretized
friction cones [9], [10], [11]. The problem with all these
approaches is the discretization of the friction cones, where
significant errors may be introduced when approximating the
cone with only a few vectors to achieve fast computation (e.g.
4 vectors lead to an error of∼ 30 %, 8 vectors still∼ 8 %
[2]). Moreover, Teichmann and Mishra [13] showed that there
are problems to be expected with this method for large friction
coefficients. This GWS approximation corresponds to the idea
that the sum of all applied forces is constrained to one, which
has only a weak physical interpretation for multifingered
grippers.

Ferrari and Canny [3] proposed a method for calculating a
physically well interpretable GWS approximation, where the
forces applied in the contact sum up to the number of contacts,
by calculating the convex hull over the Minkowski sum of
the friction cones. The drawback with directly calculating this
GWS approximation is that it is computationally expensive.

To rate the quality of a grasp, task directed and task
independent measures were introduced. Kirkpatrick et al. [4]
use the largest wrench sphere that just fits within the GWS as a
task independent quality measure of the grasp. The measure is
not scale invariant and depends on the selection of the torque
origin (r in fig. 5). To achieve invariance to the selection of the
reference point, Li and Sastry [6] propose to use the volume
of an ellipsoid generated by the grasp matrix as a measure
of grasp quality. They also suggest to model the task wrench
space as a six dimensional ellipsoid and fit it in the GWS. The
problem with this approach is how to model the task ellipsoid
for a given task, which they state to be quite complicated.

Pollard [11] introduces the Object Wrench Space (OWS)
which incorporates the object geometry into the grasp evalu-
ation. With her approach, however, this OWS represents the
best grasp that can be achieved for an object and gives no
direct measure for an arbitrary grasp. To rate the quality of
a grasp, the largest inscribed sphere is used. To achieve scale
invariance, the torque component of the wrenches is scaled



with the length of the longest object axis.
Strandberg [12] proposes to evaluate grasps using distur-

bance forces in order to overcome the problem of torque origin
selection and to take the geometry of the object into account.
The quality evaluation method is very reliable, however, the
complexity of this approach is very high as the geometric
information has to be evaluated for each grasp candidate.

In the next section, we want to illustrate shortly some
drawbacks of the so far proposed grasp measures. Then we
give a description of exact Grasp and Task Wrench Spaces
that are physically motivated and propose a very intuitive grasp
measure using these wrench space definitions. The final part
of the paper deals with a very efficient method for calculating
this new grasp measure.

II. A COMPARISON OF PROPOSED QUALITY MEASURES

AND THEIR INVARIANCES

The different methods mentioned above for rating the qual-
ity of a grasp in a task independent manner have different
properties as to scaling the grasped object, changing the ref-
erence point, and scaling torque axes. Here we shortly present
the invariances of the different methods with some simple
examples to illustrate in which case the quality measures are
intuitive and physically correct and where they may fail.

We compare the largest inscribed sphere method and the
same method with uniform scaled torques (as suggested by
Pollard) with the volume of the GWS. The first example
compares the same geometric grasp configuration applied at
different locations on the object and the change of reference
point (fig. 2). In the second example, the grasp and object are
scaled by a factor two (fig. 3). In the last example, we apply
the same grasp configuration to different objects (fig. 3).
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Fig. 2. The same grasp configuration applied at different locations on an
object (case A and C) and the change of reference point with the same grasp
on the same object (case A and B)
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Fig. 3. The same grasp and object topology scaled by a factor of two (D
and E) and the same grasp configuation applied to different objects (F and
G).

How we expect the different quality measures to compare
in the different grasp situations is listed in the table of fig. 4.

For the results on human intuition in fig. 4, some remarks
to explain the background of our decisions may be useful.
For the first example in fig. 2, we would qualify situation A
and B as equal grasps but C as inferior since we move away
from the center of mass. The scaled grasp and object (fig. 3)
situations lead to an equal qualification as there is no obvious

method fig. 2 fig. 3 fig. 3

InscrBall A ≥ B D ≤ E F = G
A ≥ C

InscrBall A ≥ B D = E F ≥ G
(torque scaled) A ≥ C
volume of GWS A = B D < E F = G

A = C
Human A = B D = E F > G
Intuition A > C

Fig. 4. Comparing the different grasp measures with human intuition in
some simple cases

reason why grasps on larger object should be better than those
on smaller. For the last case, F is superior to G as the torque
disturbances that are likely to occur are much larger in G than
in F, while the grasp abilities are the same.

III. A PHYSICALLY MOTIVATED MODEL TO SPECIFY

GRASPS AND GRASPING TASKS

There are three main questions regarding the static part of
grasping: What are the forces/torques that can be applied to
the object by the grasp? Which disturbances are expected to
act on the object? The third question is about the quality of
the chosen grasp. A good quality measure for a grasp is a
scalar that describes how well the grasp can resist the expected
disturbances.

For all three questions above various models and measures
have been developed. From a physical or mechanical point of
view, however, all can be modeled similarly and in a simple
manner.

There are only forces and torques acting on the object,
either as a disturbance anywhere on the object or in the
grasp contacts to counteract the disturbances. Both, the set
of disturbance forces/torques and the set of possible grasp
forces/torques, are usually represented in a vector space [3],
[10], [11].

A. The Grasp Wrench Space

Let us assume that the grasp consists ofk point contacts
with friction. So in each contact a force within the friction
cone can be applied to the object (Fig. 5).

Fig. 5. A single contact point in 3D illustrating the friction cone and a
sample k-contact grasp (k=3) on a planar object.

The length of the applied force vector is normalized to a
unit force as we assume that each finger can apply the same
magnitude of force and only one contact arises for each finger
(precision grasp).

The direction of the forcefi that can be applied at contact
point ci is constrained by the friction cone specified by the



friction coefficient µ, the contact pointci, and the contact
normalni. The constraint can be written as:

‖fi − (fi · ni)ni‖ ≤ −µ(fi · ni). (1)

Any force acting at a contact point on the object also creates
a torque relative to a reference pointr that can be arbitrarily
chosen. Often the center of mass is used as that reference point
to give it a physical meaning. The torqueτi corresponding to
fi is then:

τi = (ci − r)× fi

For convenience, these force and torque vectors can be
concatenated to awrench:

wi =
(

fi
(ci − r)× fi

)
Next we specify the set of wrenches that can be created by

friction cone unit forces acting in one contact. We call this
set theCone Wrench Space (CWS). It is used to clarify the
construction of the Grasp Wrench Space.

CWSci
=

{
wi

∣∣∣∣wi =
(

fi
(ci − r)× fi

)
∧

‖fi − (fi · ni)ni‖ ≤ −µ(fi · ni) ∧ ‖fi‖ ≤ 1} (2)

The Grasp Wrench Space (GWS)should contain all wren-
ches that a given grasp can counterbalance by applying forces
in its k contacts. This space can be composed from allk cone
wrench spaces in the following manner:

GWS=

{
w

∣∣∣∣∣w =
k∑

i=1

wi ∧wi ∈ CWSci

}
(3)

Note that equation 3 is an exact description of the GWS.
It corresponds to the idea that each finger of the manipulator
is capable to exert a unit magnitude of force to the object.
The only drawback of this kind of definition is that it is only
descriptive but not constructive. To find the linear combination
of finger forces to counterbalance a disturbance wrench is
difficult. This problem is addressed in section IV.

B. The Task Wrench Space

The wrenches that are expected to occur for a given task
can be specified as a so-calledTask Wrench Space (TWS). For
the TWS two cases can be distinguished, either the task to be
executed is known and a specification in the wrench space is
given or the task is unknown and no specification exists.

1) Given Task Specification:If there is a detailed descrip-
tion of the task given by a set of wrenches that are applied to
the object during the manipulation one can use the convex hull
over these task disturbance wrenches as a Task Wrench Space.
Li and Sastry [6] propose to approximate the task wrench
space by a task ellipsoid but they state that the data acquisition
is difficult.

2) Unknown Task Specification:If one knows nothing
about a grasping task, one at least can assume that a grasp
should hold an object (1) against gravity, (2) against forces
and torques arising from accelerating the object (which has

the same effect for translational accelerations) and (3) against
forces that result from contacts of the object with the environ-
ment.

A commonly used approach to model an unknown task
wrench space is to use a unit sphere in the wrench space.
With this approach it is assumed that the probability for every
wrench direction to occur as a disturbance is equal. However,
this has no physical or mechanical interpretation. Torques are
typically caused by forces acting on the boundary of the object
and therefore a general task wrench space is not uniform for
most objects.

A more natural way to describe an unknown TWS that takes
the object geometry into acount is theObject Wrench Space
(OWS)as introduced by Pollard [11]. In this work, we want
to combine the idea of the task ellipsoid [6] with the concept
of the object wrench space. This enables us to automatically
obtain a task independent, yet physically motivated description
of the wrench space that takes all possible disturbances into
account and thus is a kind of generalization over all task
dependent wrench spaces.

C. The Object Wrench Space

The OWS should contain any wrench that can be created
by a distribution ofn disturbance forces acting anywhere on
the surface of the object. As we are interested in the effect of
a normalized disturbance on the object, the sum of the length
of all n forces should be 1. By contrast, the number of forces
that act on the object is unlimited (son ∈ {1..∞}; see fig.
6 for illustration). The OWS can again be composed of the
union of cone wrench spaces, in the following way:

OWS =

{
w

∣∣∣∣∣w =
n∑

i=1

αiwi ∧

n∑
i=1

αi = 1 ∧wi ∈ CWSi ∧ n ∈ {1..∞}

}
(4)

This description represents the resulting wrenches of any
possible disturbance of a certain magnitude that act on the
surface. To add gravity, which acts not on the surface but in
the center of mass, one can merge this OWS with the wrench
space that is produced by forces of any direction acting in the
center of mass. If the reference pointr is equal to the center
of mass, then one merges a sphere in the force domain to
the OWS, scaled with the mass of the object. For the general
case, the “mass wrench space” (MWS) generated by gravityg
acting in any direction in the center of mass (m) (dependent
on the object rotation) can be written as:

MWS =
{
w

∣∣∣∣w =
(

f
(m− r)× f

)
∧ ‖f‖ ≤ m · g

}
(5)

Such an OWS∪ MWS describes the general case where
nothing about the task is known very naturally, as any possible
disturbance and also gravity is represented. The drawback
is again that there is no constructive description to really
calculate the set.



Fig. 6. Illustration of different force distributions that produce the wrench
set of the OWS. Each distribution contributes one single wrench to the OWS
set. The length of all force vectors sum to the unit length.

D. The Physically Motivated Grasp Quality MeasureQMBF

As stated in the introduction, many different quality metrics
for grasps have been introduced but almost all of them have
drawbacks that arise from the different units or scaling in the
force/torque dimensions in the grasp wrench space or are even
dependent on the selection of the reference point. With the
OWS defined above, we can propose a quality metric that
overcomes all these drawbacks and rates grasps in a physically
interpretable and intuitive way. Of course, the non-uniformity
of the wrench space remains. However, our concept generates
a physically interpretable scaling between forces and torques
automatically.

We take the ability of a grasp to counteract the possible dis-
turbances on an object as a measure of the grasp quality. The
Grasp Wrench Space (GWS) of a given graspCk represents
the capabilities of the grasp, while the Object Wrench Space
(OWS) of a given objecto defines which disturbances may
occur. So the largest factor by which we can scale the OWS
to just fit in the GWS gives us a measure of the grasp quality.
Formally expressed, we get

QMSBF(Ck,o) = {k; k → Max |

∀x ∈ OWSo : k · x ∈ GWSCk

}
(6)

With this measure, we are independent of the selection of
the reference point as we use it for the creation of both wrench
spaces. Moving the reference point can be expressed by a
linear transformation that is norm conserving and so it takes
no effect on the scaling factor.

It should be noted that the above descriptions are an exact
view on the static grasp situation which is the base for the
grasp planning problem that we want to address with our grasp
quality measure. The question of how to control the forces
exerted by the manipulator to resist certain disturbances in
a real dynamic grasp situation is not addressed. See [7] for
a review. Also, no other phenomena that may occur when
the grasped object dynamically touches the enviroment are
considered.

The problem with our described measure is to find a way
to efficiently calculate the scaling factor of the task wrench
space. This problem is considered in the following sections.

IV. A M ODIFIED GRASPQUALIFICATION PROCEDURE

The next problem to be solved is to integrate the OWS
concept in a computationally efficient manner into a grasp
qualification procedure: Our grasp measure calculation uses

the more complex but physically more relevant Minkowski-
sum based grasp quality measure [2]. For cases where no
task wrench space is given, we use the radius of the largest
inscribed sphere. Our grasp quality measure calculation is of
extremely high performance. This stems from the fact that
we calculate the GWS not completely but iteratively only
at its relevant, “weakest” regions, i.e. where the inscribed
sphere touches it. For obtaining the weakest wrench direction
during the iterative GWS computation, we project it into the
grasp contact friction cones. This way we easily get the linear
combination of CWS wrenches that sum up to the largest
possible wrench in this direction. (BTW this also avoids the
need for a friction cone discretisation, which is a major error
cause, as mentioned above).

As motivated in section III-B.2 we now want to compare
the OWS (and no longer the largest inscribed sphere) with
the GWS of the grasp that is actually evaluated. That means
we search the largest scaling factor for a given OWS to
fit it into a GWS. In order to keep this algorithm of the
same complexity, we cannot use the sampled OWS directly.
Instead, we circumscribe the OWS with an ellipsoid and use
the corresponding inverse linear mapping for the GWS. Thus
we reduce the problem to the above mentioned “sphere fitting”
problem with an additional linear mappping per GWS vector
(see fig. 7).

TWS

GWS

GWSGWS

TWS conv(TWS)

GWS

TWS

Fig. 7. Approximating the OWS with an ellipsoid:
1. The sampled OWS (exact space, exact quality measure)
2. Convex Hull over the sampled OWS (approx. space, exact quality measure)
3. Enclosing ellipsoid (approx. space, approx. quality measure)
4. Linear transformation of ellipsoid and GWS (sphere algorithm applicable)

A. Calculating an OWS approximation ellipsoid

We are looking now for the smallest ellipsoid (spanned by
the quadratic formxT Qx ≤ 1, Q symmetric and positive
definite) that encloses the QWS, more formally, we look for
Q that fulfills

∀x ∈ OWS : xT Qx ≤ 1 ∧ ∀Q′ 6= Q : V (Q′) < V (Q)

V (Q) = 1/
√

det(Q) being the volume of the ellipsoid
spanned byQ.

In the following, we outline a four step procedure to
efficiently calculate a small (not necessarily the smallest)
OWS approximation ellipsoid: (1) Sample a discrete set of
OWS wrenches, (2) find a special, analytically describable
hull HULL(OWS) for these, (3) circumscribe an ellipsoid
to HULL(OWS) and (4) integrate this OWS representation
in our grasp qualification algorithm.

1) OWS sampling:Given a polyhedral object model, we
get a set of wrenches (OWS) that sample and approximate
the corresponding OWS by calculating the wrenches generated
from friction cone approximation forces at the corners of all
polygons of the object. Of course, one might use this set



directly to compute the smallest enclosing ellipsoid. This,
however, is computationally expensive and doesn’t allow for
keeping the spherical structure of the OWS’s force dimensions.

2) An OWS hull:Let’s start with a short discussion of the
OWS structure: First, by definition, the forces generating the
OWS have all unit length and can have any direction (on most
objects), thus the OWS projection to the force dimensions can
be tightly enclosed by a unit sphere. To add the effects of
gravity for the (most relevant) case that we use the center
of mass as our reference point, we add a scaling factorc =
Max(fcontact, fgravity) and get

Hull(OWS|forces) =
{

f
∣∣∣ 1
c
‖f‖2 = 1

}
Next, the form and size of the OWS projected to its torque

dimensionsOWS|torques is determined by the object geom-
etry. From examples with different test objects we can see
that this projection can be approximated by a 3 dimensional
ellipsoid without introducing a large error (see fig. 8).

Fig. 8. The structure of the OWS projections in force and torque space for
two sample objects a cube and a champagne glass. In force space (middle)
one can see that not every direction can be generated by a single disturbance
force, due to the limited surface normal directions on a cube. For the glass
the force space is almost a perfect sphere.
The torque space for the cube is symmetric in all coordinate axes and the
enclosing ellipsoid would be a sphere in this special case. For the glass the
torque space is flat for torques round the symmetry axis of the glass.

Assuming that we already have given the ellipsoid which
enclosesOWS|torques as a quadratic form with the symmetric
matrix W (see sect. IV-A.5), we get

Hull(OWS|torques) =
{
t′ | t′T Wt′ = 1

}
with t′ = t−torigin wheretorigin is the center of the torque

enclosing ellipsoid (again see sect. IV-A.5). Finally, we can
combine all this information (independence of the force and
torque dimensions can be expressed as maximum norm) with
w = (fT , tT )T

Hull(OWS) =
{

w
∣∣∣ ∥∥∥ 1

c
‖f‖2, tT Wt

∥∥∥
∞

= 1
}

For people like us who like some rough visual or lower
dimensional interpretation of the things they deal with: In 3D
this corresponds to a cylinder, but instead of being bounded by
its height and a circle, this 6D object is bounded by a sphere
and a ellipsoid in its force and torque dimensions, respectively.

3) The OWS approximation ellipsoid:The next thing to be
done now is to find a “small enclosing 6D ellipsoid” for this
“cylinder”: We choose a coordinate system for the following
in which the torque ellipsoid is centered at the origin and its
main axes are aligned with the coordinate system axes of the
torque dimensions. Let’s call this transformationM. In this
coordinate systemM the shape ofW is

W = MW =

 t1 0 0
0 t2 0
0 0 t3


As there is no need for a transformation in the force

dimensions (a sphere), we need to look for a quadratic form

xT Qx ≤ 1, Q =


k1 0 0 0 0 0
0 k2 0 0 0 0
0 0 k3 0 0 0
0 0 0 k4 0 0
0 0 0 0 k5 0
0 0 0 0 0 k6


To determine thek1..k6 we again come from the 3D intu-

ition: If we want to calculate the smallest enclosing ellipsoid
for a cylinder, we know that this ellipsoid needs to touch
the cylinder in the cylinder’s bounding circle, which means,
in particular, that the projection to the cylinders “circle”
dimensions also looks like a circle.

In 6D this requires that the ellipsoid should touch the
“bounding force sphere”, and projected to the force dimension
it looks like a sphere:

k1 = k3 (7)

k2 = k3 (8)

The property of touching the unit force sphere means in 2D
that the edge points of a rectangle touch its smallest enclosing
ellipse. Its 6D analog is

xT Qx = 1 ∀x ∈




0
0
c
t4
0
0

 ,


0
0
c
0
t5
0

 ,


0
0
c
0
0
t6




expressed by the following equations

c2k3 + t24k4 = 1 (9)

c2k3 + t25k5 = 1 (10)

c2k3 + t25k5 = 1 (11)

.
The equations 7 through 11 determine a family of ellipsoid



generating quadratic forms

Qk3 =



k3 0 0 0 0 0
0 k3 0 0 0 0
0 0 k3 0 0 0
0 0 0 1−c2k3

t24
0 0

0 0 0 0 1−c2k3
t25

0

0 0 0 0 0 1−c2k3
t26


To computek3 corresponding to the smallest ellipsoid, we

minimize the trace (a measure for the volume of an axis
aligned ellipsoid) of the matrixS that transforms a unit
sphere to the ellipsoid corresponding toQ = (SS)−1. As
tr(S) = 1√

tr(G)
, we need to minimize

tr(S) =
1√

k3
3

1−c2k3
t24

1−c2k3
t25

1−c2k3
t26

and get the (not surprising) solutionk3 = c2/2, which results
in the ellipsoid generating matrix

Q =



c2

2 0 0 0 0 0
0 c2

2 0 0 0 0
0 0 c2

2 0 0 0
0 0 0 c2

2t24
0 0

0 0 0 0 c2

2t25
0

0 0 0 0 0 c2

2t26


.

In fig. 10 through 13 we plotted several 2D projections of
OWS for a champagne glass (fig. 9),Hull(OWS) (the inner
circle and the rectangle, resp.) and the final ellipsoid, resulting
from Q (Note that the plot axes are scaled so that the outer
ellipsoid is mapped to a circle). Although the projections look
rather conservative, it should be noted thatOWS touchesthe
ellipsoid and that the shape ofOWS is approximated very
well (especially in the force dimensions,Q adds no distortion
at all!).

4) Integration in Our Grasp Measure Algorithm:The in-
corporation ofQ in the previously mentioned grasp quality
measure is straightforward:

For the incremental GWS calculation we map each GWS
vector with the inverse mapping which maps a 6D unit sphere
to our ellipsoid: Note that we determinedQ in a rotated and
translated coordinate systemM (see above).M is derived
from the meanµT and the covariance matrixΣT of the torques
of OWS (see sec. IV-A.5). The translational part ofM is µT,
the rotational part is the smallest rotationR of ΣT’s main
axes to the coordinate axes (note that there is no rotation
and translation in the force dimensions, only in the torque
dimensions). Now we just need to map each GWS vectorw
to

w′ = R−1

(
w −

(
0

µT

))
and can use our high performance, high precision, phys-

ically well motivated grasp quality measure not only for a
spherical task wrench space but also for a physically motivated

task wrench space with a neglectible loss of performance!
5) Enclosing Torque Ellipsoid:The only thing that remains

to be done now is to determine the smallest enclosing ellipsoid
for the OWS projected into torque space. Although there
may be better algorithms, we use first and second order
statistics here because of high computational performance and
sufficiently good results:

Given an OWS as a set of sampled wrenches (OWS, see
sec. IV-A.1) , we project the wrenches to a set of torques in
torque spaceT = OWS|torque and calculate the meanµT
and the covariance matrixΣT.

Σ−1

T
is already very similar to a quadratic form of an

enclosingellipsoid, we just need to add a scaling factor

σ = max
(
t′T Σ−1

T
t′ | t′ ∈ T− µT

)
and get

QT = (σ2ΣT)−1

V. CONCLUSION

In this paper we give a well defined and pysically motivated
description of a general task wrench space based on an OWS
for cases where no exact task specification is known. From
this TWS we derive a quality measureQMBF and show how
it can be implemented very efficiently.

The main improvement this measure adds to our grasp plan-
ner is for grasping long, thin objects, e.g. a screwdriver: While
using a sphere as a general task wrench space specification
as we did before results in good grasps without accounting
for different torques in different object dimensions, using our
TWS approximation takes care of those now.

It has also to be mentioned that the computation time of
the new measure is only slightly above the time for the old
one. That is due to the preprocessing of the grasp object to
calculate the ellipsoid approximation of the OWS (mainly the
calculation of the mean and the covariance matrix), which
takes some 10 ms on a 2 GHz Pentium IV and is done only
once per object. The online mapping of the GWS increases the
computational complexity for calculating the grasp quality by
∼ 100 multiplications per iteration step (number of contacts
·62) , which still leads to a small total computation time of
∼ 10− 20 ms for the grasp quality.
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Fig. 9. The object and its sampled OWS in force and torque space for which
the OWS projections were calculated.

Fig. 10. Projection to force dimensions 1 and 2.
The inner circle is the projection of theHull(OWS), the outer circle is the
projection of the enclosing ellipsoid, resulting fromQ.

Fig. 11. Projection to force dimensions 2 and torque dimension 4.
The box is the projection of theHull(OWS), the outer circle is the projection
of the enclosing ellipsoid, resulting fromQ. (Note that the plot axes are scaled
so that the outer ellipsoid is mapped to a circle)

Fig. 12. Projection to force dimensions 3 and torque dimension 4
(for explanation see fig. 11)

Fig. 13. Projection to torque dimensions 4 and 6
(for explanation see fig. 10)
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