DLR Portal
Home
|
Sitemap
|
Contact
|
Accessibility
Imprint and terms of use
Privacy
Cookies & Tracking
|
Deutsch
You are here:
Home
:
Projects
:
Completed Projects
:
Other closed space robotics missions
Advanced Search
Institute of Robotics and Mechatronics
Departments
Robotic Systems
Applications
Research
Projects
ASCEND
CeTI
CoViPa
DIH-HERO
EROSS IOD
euROBIN
FoF-X
iFOODis
IntelliMan
ION
KI4HE
LEROSH
MaiSHU
MaTiC-M
MMX
M-Runners
NatDyReL
OPERA
ORU-BOAS
SmartHand
SMiLE (project series)
SMiLE2gether
SMRS
SoftEnable
Surface Avatar
Completed Projects
AHEAD
AI4EU
AnDy
ARCHES
COMANOID
COSMA
DIH-RIMA
EmPReSs
EROSS+
EUROC
FACILITATORS
Factory of the Future
FUTURO
GINA
Hovitron
InFuse
Kontur-2
LIPA
MASCOT
METERON
MIRO Innovation Lab
MIROLab
MOSAR
Dynamische Regelung Humanoider Laufmaschinen
PHRIENDS
PULSAR
RACE-LAB
RAS – Robotic Airbag Systems
RobDREAM
ROBEX
ROKVISS
SAPHARI
SMART-Assist
SMErobotics
SMiLE (project)
RedMod
SoMa
SpaceBot Camp
STABLE
STAMAS
News and Publications
TAPAS
THE
VeriDream
VIACTORS
VITA
VVITA
Other closed space robotics missions
Spin-offs
Publications and downloads
Job offers
How to get to us
News Collection
Older closed space robotics missions (in alphabetical order)
AROMA
The AROMA study (2000-2002) mainly focused on the definition of robot configurations for various purposes in modular design, attached to different Mars rover types. DLR’s contribution to this ESA study consisted mainly of defining appropriate robotic devices for inspection and monitoring of facilities on Mars.
Full article
CIRCUS
CIRCUS is a compact integrated robot controller unit and servo amplifier for further 7 degrees-of-freedom internal robot arms on the ISS and the attached grippers. Such an arm would be used for, e.g., repetitive payload handling.
Full article
CSA Cooperation
Canada's contribution to the International Space Station (ISS) is the Mobile Servicing System (MSS), which is composed of the Mobile Remote Servicer Base System (MBS), the Space Station Remote Manipulator System (SSRMS) and the Special Purpose Dexterous Manipulator (SPDM).
Full article
ESS
Immediately after ROTEX, we started to build up laboratory experiments for studying the dynamical behaviour and the rendezvous and docking capabilities of a free-flying servicing satellite, consisting of a robot arm mounted on a conventional chaser. A free-flying tele-robot ESS (Experimental Servicing Satellite) was supposed to approach, inspect, and repair a malfunctioning satellite.
Full article
ESS-OSS
A nationally funded study was initiated in 1999 to design a servicing satellite for operations in low earth orbit (LEO). The background was to rescue the scientific satellite ROSAT (a German Röntgen satellite launched in 1991), that was built without having any thrusters for controlled de-orbiting.
Full article
EUTEF
In 1998 and 1999 the institute and its Italian industrial partner CARLO GAVAZZI developed subsystems for the ESA-project EUTEF (EUropean Technology Exposure Facility). Detailed concepts were elaborated concerning the mounting of pallets on the outer structure of ISS (either on the long grid structure or at the European COF-module), where a robot arm should perform operational payload handling; i.e., grasping payload-boxes and drawers, inserting them into measurement devices or exposing them in a dedicated way to space radiation and illumination (stars, sun, etc.).
Full article
GETEX
From April 19-21, 1999 DLR’s tele-robotic and programming system was used to control the robot arm on the Japanese ETS-VII satellite. The main goals of the German ETS-VII Technology Experiments (GETEX) were to verify our tele-robotic ground control station for remote control of a free-floating robot, in particular to perform a peg-in-hole experiment, using VR methods and the „vision&force“ control scheme, by closing sensor control loops directly on-board (force) and via the ground track (vision), thus proving our sensor-based autonomy features, to conduct experiments with relevance to the behavior of the ETS-VII in free motion mode and thus to verify the existing 6 DoF dynamic models for the interaction between a robot and its free-flying carrier satellite.
Full article
MISSIS
In 2000 the nationally funded study MISSIS (Mobile Inspection and Service System for ISS) aimed at the development of a mobile inspection and service system for the ISS Columbus module. The major goal was to demonstrate advanced technologies for security enhancement of the station while reducing extra-vehicular activities (EVA) and thus reserve more time for other research activities.
Full article
OLEV
It seems that with our capture tool and docking technology as developed for ESS, we might create the first business case in on-orbit-servicing. Telecommunication satellites typically cost at least $250 million and are designed for an average on-orbit life-time of 10-15 years.
Full article
PSPE
Autonomous planetary exploration will play an important role in future space missions. Therefore we have studied the feasibility of robotised planetary exploration in several ESA contracts (ROBUST, PSPE, ROSA-M). Within the European Payload Support for Planetary Exploration (PSPE) project, we have proposed a Lander spacecraft configuration and control concept, which should allow to perform geo-science operations on Mars, but with higher local autonomy than, e.g., the pathfinder’s sojourner rover.
Full article
ROGER
A feasibility study was performed in 2002 for ESA on capturing a non-cooperative target satellite in geostationary orbit and its subsequent de-orbiting into a graveyard orbit. We were involved in the analysis of two strategies which both consisted of a chaser satellite deploying a tether, at the end of which was either a net or a robotic gripper to capture the target.
Full article
ROTEX (1988–1993)
ROTEX (Robot Technology Experiment on Spacelab D2-Mission) was kind of a starting shot for Germany’s participation in space automation and robotics. It contained as much sensor-based on-board autonomy as possible, but on the other side it presumed that for many years cooperation between man and machine, based on powerful telerobotic structures, will be the foundation of high-performance space robot systems, operable especially from ground.
Full article
TECSAS / DEOS
Due to a programmatic reorientation of the of the TECSAS project, this activity was stopped in September 2006. Information concerning the subsequent project DEOS (Deutsche Orbitale Servicing Mission) will be presented on our web pages as soon as possible.
Full article
Related Articles
ROKVISS-Projekt
Force-Feedback Joystick (2003–2010)
DEXHAND
Copyright © 2023 German Aerospace Center (DLR). All rights reserved.