ClusterShell, Python library and tools
for scalable cluster administration

Stéphane Thiell, Aurélien Degrémont and Henri Doreau
CEA, DAM, DIF, F-91297 Arpajon, France

{stephane.thiell, aurelien.degremont, henri.doreau}@cea.fr

Abstract—Cluster-wide administrative tasks and other dis-

tributed jobs are often executed by administrators using locally
developed tools and do not rely on a solid, common and efficient
execution framework. This document covers this subject by giving
an overview of ClusterShell, an open source Python middleware
framework developed to improve the administration of HPC
Linux clusters or server farms.
ClusterShell provides an event-driven library interface that eases
the management of parallel system tasks, such as copying files,
executing shell commands and gathering results. By default,
remote shell commands rely on SSH, a standard and secure
network protocol. Based on a scalable, distributed execution
model using asynchronous and non-blocking I/0, the library has
shown very good performance on petaflop systems. Furthermore,
by providing efficient support for node sets and more particularly
node groups bindings, the library and its associated tools can ease
cluster installations and daily tasks performed by administrators.
In addition to the library interface, this document addresses
resiliency and topology changes in homogenous or heterogenous
environments. It also focuses on scalability challenges encountered
during software development and on the lessons learned to
achieve maximum performance from a Python software engi-
neering point of view.

I. INTRODUCTION

From a logical perspective, cluster system software is
what differentiates a cluster from a collection of individual
nodes. Especially, having a scalable and resilient cluster system
management toolkit is essential to the successful operation
of clusters. According to the TOP500 [1] list, more than
95% of installed HPC systems are running Linux, and open
source software is now used as the foundation of most general-
purpose! supercomputers. But even the simplest cluster-wide
administrative task can become nightmarish when executed
on a petaflop supercomputer with thousands of nodes. Tools
or services are often tuned to scale on a case-by-case basis.
As a result, clusters often rely on a fragile administration
software layer, suffering from the lack of robustness, usability
and from management complexity. ClusterShell answers this
by providing an open source, scalable Python framework for
cluster management and administration, that can be used by
both system administrators and software developers. Indeed,
benefiting from full-featured and scalable tools can save a lot
of time for administrators, resulting in more efficient daily
operations and reduced downtime during scheduled mainte-
nances.

ClusterShell is available as a Free Software product under
the terms of the CeCILL-C license [6], a French transposition
of the GNU LGPL, and is fully LGPL-compatible. It consists

in a Python (v2.4 to 2.7) library and a small set of command-
line tools. It takes care of common administration issues
encountered on clusters, such as operating on groups of nodes,
running distributed commands using optimized execution al-
gorithms, as well as helping result analysis by gathering and
merging identical command outputs, or retrieving return codes.
It takes advantage of existing remote shell facilities already
installed on most systems, such as SSH. The command-line
tools, clush, clubak and nodeset are efficient building
blocks for administrators that also allow traditional shell scripts
to benefit from some of the library features. Figure 1 shows
an overview of the ClusterShell framework.

Primarily, the ClusterShell Python library implements an
efficient event-based mechanism for parallel administrative
tasks, whether them being local or distant. The ClusterShell
Python API? provides an event-driven and object-oriented in-
terface that allows application to schedule actions, like running
shell commands or copying a file, and to register for specific
events from these local or remote tasks. Several helper methods
are then available to analyze results during the execution or
afterwards.

CLI E
1

clush, nodeset, ...

ClusterShell Library

Python Std Library

ya / / l \,_‘/'_ - _\ \
SSH Local cmd 1" other 1,
(Popen) \ v

remote

Fig. 1. ClusterShell framework overview

II. CLUSTER NAMING SCHEME

Computer clusters often use a systematic naming scheme,
such as a common node prefix conforming to RFC 1178
”Choosing a name for your computer” [15] plus a numbering
scheme. For example, high-availability clusters [11], database

'General purpose as defined in [8]

Zhttp://packages.python.org/ClusterShell/

clusters and Hadoop clusters (for HDFS DataNodes [20])
frequently use simple serial naming procedures for individual
servers. The naming policy of high-performance computing
cluster nodes is often as simple, but can also be more complex
by adopting a multi-dimensional numbering scheme. A num-
bering system that matches physical locations in a server room
is sometimes adopted (eg., nodes are named according to the
rack and slot number in [21], [7], [19] like rO1n03). In this
section, we define the nodeset and node group notations and
present associated features available in ClusterShell to easily
and efficiently manage these cluster naming schemes.

A. The nodeset notation

The nodeset notation supported by the library is an exten-
sion of the one already used in high performance computing
cluster tools such as SLURM resource manager [12], pdsh [17]
or kanif [10]. Indeed with clusters growing, a commonly
adopted notation has emerged mainly to allow the use of ranges
whenever possible. Figure 2 shows this naturally compact
cluster nodes naming scheme.

curie0

curie0, hwmO

stor[02-08]
curie[50,100-120,200-249] -ipmi
da[10-19]c[1-2]

Fig. 2. Common nodeset examples

Moreover, our practical experience in cluster administration
has shown that being able to embody some basic set operations
in nodeset can be very convenient, and thus even more when
working with node groups (discussed below). We define as a
valid nodeset notation the following special operators:

e , as the union operator,

° ! as the difference operator,
e & as the intersection operator,

e "~ as the symmetric difference operator.

nodeset patterns are read from left to right, and character
operators are processed as they are met. Figure 3 shows a
simple example.

curie[0-50] !'curieb5 <= curie[0-4, 6-50]

curie[0-10]&curie[8-20] <= curie[8-10]

Fig. 3. nodeset character operator examples

B. Node groups

A node group represents a collection of nodes. Working
with node groups is much more convenient and much safer
when administrating large compute clusters or server farms.
For example, a node group can correspond to nodes using
the same set of resources or a specific type of hardware.
Node groups can be used for a variety of reasons. In most
cases, cluster software already provides several sources of
static or dynamic node groups (eg., from a cluster database,
genders [16], SLURM nodes, partitions or jobs [12], etc.).

ClusterShell is able to bind to these node group sources and
to provide unified information to the cluster management soft-
ware. Node group provisioning is done through user-defined
shell commands or through library extensions in Python. That
is, ClusterShell itself doesn’t manage node group definitions.
Still, binding to a node group source based on flat files is
straightforward?.

The unified node group string notation introduced with
ClusterShell is invariably prefixed by the at sign (@) and con-
structed from the node group source followed by a separator
character (:) and a node group name, the latter being freely
expressed by the source. The notation can be further simplified
using relative naming by omitting the node group source. In
this case, the node group source configured by default is used
to resolve the group. Figure 4 illustrates this syntax.

@ compute
——

group name
in default
group source

@ slurm : bigmem

explicit group name

group
source
name

Fig. 4. Overview of nodeset syntaxes for node groups

Evaluating node groups in a nodeset notation is quite
straightforward, they are simply substitued by their corre-
sponding nodes when needed. As for regular set of nodes,
operator characters seen on section II-A are supported with
node groups. For example,

@diskless&@slurm:standard

could stand for diskless nodes from the SLURM partition named
standard.

Using a node group explicitly indicates a grouping inten-
tion so operations are computed on the whole group, but also
on the whole set of groups when brackets are used to design a
set of ranges. Otherwise, the operator-separated list of elements
is evaluated from left to right. Purposedly, there is no support
for parentheses or other ways to explicitly indicate precedence
by grouping specific parts. Indeed, we tried to keep the syntax
simple enough, focusing on the wide variety of tasks that
cluster administrators perform.

C. Working with nodesets

nodeset objects are omnipresent in the ClusterShell frame-
work within the NodeSet Python class. Two user-interfaces
are available to manipulate nodeset strings, whose syntax is
described in section II-A: one is the NodeSet Python class
and the second one is the nodeset command-line tool.

The NodeSet class implements an ordered collection
of unique node names. All available NodeSet methods
have been implemented with efficiency in mind. We discuss

3 A node group source example, based on a flat file, is provided by default.

in section IV-B some scalability challenges in this regard.
NodeSet’s interface is similar to the one of Python set,
and most notably, it supports mathematical operations like
union, intersection, difference and symmetric difference. As
an ordered set, __getitem__ () by index or slice is also
allowed. Furthermore, NodeSet provides additional methods
aimed at helping administrators with nodesets manipulation,
like split (n) to split a nodeset into n subsets. The Python
code snippet in listing 1 highlights some features of the
NodeSet class.

Listing 1. Basic uses of the NodeSet class

from ClusterShell.NodeSet import NodeSet

nsl NodeSet ("node [10-42]1")
ns2 = NodeSet ("node[1-16,18-39]")

33

nodel0
node[10-16,18-39]
node[17,40-42]

print len(nsl)
print ns1[0]

print nsl & ns2
print nsl - ns2

S R

for node in nsl:
do_something_with (node)

The nodeset tool is a command-line interface to the
NodeSet Python class seen above. For instance, nodeset
provides optional switches to count the number of nodes
within a nodeset (-c), to expand it (-e), to fold nodes into a
compact nodeset (—£), to access node groups information, etc.
It has become for us an essential command for daily cluster
administration and an integral part of our shell scripts. All
of its features are described in the documentation and on the
ClusterShell Wiki*.

The rest of this section describes some implementation
aspects of different nodeset features.

1) nodeset folding: To fold a nodeset, we need a way to
fold a set of ranges (a rangeset), as seen on section II-A.
RangeSet is the Python class that manages a rangeset.
The latest implementation uses a standard Python set ob-
ject to store the set of indices. We discuss in section IV-B
performance issues encountered on this topic. The folding
implementation uses an iterator> on slice found objects, each
one representing a set of indices specified by a range, plus a
possible step. This is called, for example, when displaying a
nodeset as a string.

Uni-dimensional nodeset is thus mainly solved by having
a way to fold a rangeset. Multi-dimensional nodeset folding
is more complicated. While expanding a multi-dimensional
nodeset 1is easily achieved through a cartesian product of
all dimensions (we use Python’s itertools.product ()),
folding is achieved by comparing rangeset vectors two by two,
and to merge these vectors if they differ only by one item.
Figure 5 shows an example of this multi-dimensional folding
feature, available starting with ClusterShell version 1.7.

2) Node groups regrouping: Another interesting Cluster-
Shell feature is the ability to find fully matching node groups

“https://github.com/cea-hpc/clustershell/wiki
5RangeSet ._folded_slices()

$ nodeset -f dalcl dalc2 da3cl da3c2
dal[l,3]cl[1-2]

Fig. 5. Example of multi-dimensional nodeset folding using the nodeset
command-line tool

for a specified nodeset. This is called the regroup functionality.
A simple heuristic implementation determines whether to use
the 1ist (list all groups) plus map (group to nodes) external
commands, or to use reverse (node to groups). It then
resolves node groups, returning largest groups first.

III. REMOTE COMMAND EXECUTION LIBRARY

ClusterShell Task and its underlying Engine class are
the fundamental infrastructure associated with a thread. Indeed,
there can be only one Task object per thread. An Engine
implements an event processing loop that can be used to
schedule work and coordinate incoming events. The purpose
of this run loop is to keep the thread busy as long as there is
work to do. The task_self () function returns the instance
of the current thread’s Task. The Task interface allows
you to run a set of commands on the cluster, represented
by Worker-based objects. There are several classes of work-
ers available, the default is WorkerSsh that uses standard
SSH to connect to remote hosts. Other available workers
are WorkerPopen (default worker used for local command
execution), WorkerPdsh (based on the pdsh [17] tool) and
WorkerRsh (based on the rsh remote shell program).

While the library is natively event-based, it still offers an
imperative programming model for simple scripts. Listing 2
shows an example of using the library to run a cluster com-
mand in parallel and display its result, automatically grouping
nodes that return the same command output.

Listing 2. Basic uses of Task
from ClusterShell.Task import task_self
task = task_self ()

run cluster command (blocking call)
task.run ("/bin/uname -r", nodes="node[36-65]")

cluster command complete, check results...
for buffer, nodes in task.iter_buffers():
print nodes, buffer

More advanced programs can be written using the event-
driven programming model. When submitting commands to
cluster nodes, such a program installs event handlers to listen
for events and takes actions accordingly. Listing 3 illustrates
the use of the event-driven library by launching a parallel
cluster command that updates BIOS firmware. As soon as the
script gets a reply, it checks for BIOS version and updates it
if needed.
Listing 3. Using Task with an event handler

from ClusterShell.Task import task_self
from ClusterShell.Event import EventHandler

class BIOSUpdater (EventHandler) :

def ev_read(self, worker):

if worker.current_msg != "2.0a":
return
cmd = "flashrom -F -w " \

"/lib/firmware/BIOS2.1"
worker.task.shell (cmd,
nodes=worker.current_node)

task_self () .run(
"/usr/sbin/dmidecode -s bios-version",
nodes="node [36-65]",
handler=BIOSUpdater())

IV. SCALABILITY CHALLENGES WITH CPYTHON

As a system software, ClusterShell is relying on CPython,
the most-widely used implementation of the Python program-
ming language. It is also the default of all Linux distributions
used for clustering that we know of. This sections addresses
performance challenges we faced in order to use CPython at
scale.

A. Parallel programming

Because of its Global Interpreter Lock (or GIL), the
standard CPython interpreter is unable to achieve actual con-
currency with multithreaded programming [3]. Nevertheless,
modules from the Python standard library can be leveraged
to bypass this limitation and write high performance parallel
code.

ClusterShell uses a combination of non-blocking I/O man-
agement and multiprocessing. The event-based I/O notification
infrastructure is described in section V-A. For CPU-intensive
operations such as SSH connections, ClusterShell spawns
external processes via the fastsuprocess module (see
section IV-C). It therefore delegates scheduling operations to
the OS, removing GIL-based contention constraints.

B. RangeSet performance

RangeSet is the Python class that manages a set of ranges
as seen in section II-A. Its first implementation® was using in-
memory slice objects representing the set of indices specified
by a range, plus an optional step value (> 1). We first thought
that direct access to ranges and operations done on these
objects for 10k nodes (eg., on a range like 1-10000) would
be optimal with limited memory footprint. But performance
issues were quickly encountered when running on thousand
nodes HPC clusters. The complexity of most related algorithms
being in O(R) with R a number of discontinuous ranges, the
bottleneck was then the high number of discontinuous ranges
seen on these clusters. These sparse nodesets are commonly
seen on large clusters (the way nodes are replying, in a random
fashion, can create such “holes”).

We then developed an intermediate implementation in
Python using a bint rees-based AVL tree [14] to operate on
ranges in O(log(n)). While it significantly outperformed the
first implementation, we still did not achieve the performance
we aimed for in all cases, probably because of the CPython

6up to ClusterShell 1.5

overhead when creating a large number of objects. As a com-
parison, bintrees benchmarks using the pypy interpreter’
show a 10 to 40 times speedup over CPython®.

In the current implementation, the RangeSet class finally
uses a Python set. Ranges are expanded as numeric indices
in the set and a folding algorithm is used in case it needs to
display a rangeset. It probably looks less elegant than using a
balanced tree of ranges, but it is significantly faster than the
AVL-tree implementation, mainly because sorting and set-like
operations are very efficient in CPython.

C. fastsubprocess

First versions of ClusterShell used the subprocess
Python module to spawn new processes and connect to their
input, output or error pipes. When using a large fanout value
(> 128), that is, the number of child processes allowed to
run at a time, we noticed a significant overhead localized in
subprocess.Popen, even on medium size clusters. We
found out that the parent Python process spends its time
in a blocking read (2) operation, waiting for its children,
leading to a serialization of all forked processes. Indeed, a pipe
allows exceptions raised in the child process before the new
program has started to execute, to be re-raised in the parent
for convenience. This problem has been discussed on Python
issue #11314° and the choice of feature vs. performance has
been kept for now.

To solve this issue, we decided to adapt the subprocess
module to make a faster, performance oriented version of the
module for ClusterShell, that we named fastsubprocess.
We removed the pipe used to transfer potential execution
failures from the child to its parent, thus avoiding the blocking
read (2) call. A child process returns a status code of 255
on execv (3) failure, which is handled by Popen.wait ()
in the ClusterShell library on proper event. We now also
return file descriptors instead of file objects to avoid calling
fdopen (). The only drawback of fast subprocess is that
it is not able to distinguish between an explicit return code
of 255 from the child and an execv (3) failure, which we
considered being an acceptable shortcoming considering the
performance gain presented below.

Experiment: We evaluated the performance of the
fastsubprocess module on Tera-100, CEA largest HPC
Linux cluster, composed of a four-socket eight-core Intel®
Xeon Nehalem EX (X7560) head node!® running at 2.27 GHz
with 64 GB of RAM, and more than 3000 compute nodes!!
each also four-socket X7560 nodes with 64 GB of RAM.
ClusterShell version 1.4 was implemented using the regular
Python subprocess module. Figure 6 clearly illustrates the
scalability problem of this module when used intensively. As
of version 1.5, we switched to our own fastsubprocess
optimized module. Pdsh and ClusterShell 1.5 produced very
similar results. However, ClusterShell execution times were
slightly lower.

http://pypy.org/
8http://pypi.python.org/pypi/bintrees/
9http://bugs.python.org/issuel 1314
1036030 bullx node

1186010 bullx nodes

18 T T T T T
—a— clush 1.4 (subprocess)

16 - ---2--- clush 1.5 (fastsubprocess) ,
- pdsh 2.18
8 14t -
c
S 12t .
L
o 10 F —
£
st 8 I _
8
5 6 - _
o -
L 4+ g
(i -

_—”‘EI___—
2 __”H‘,,_E]
AT
OF L 1 L 1 L 1
0 1000 2000 3000
Number of nodes
Fig. 6. Performance comparison between ClusterShell engines based on

subprocess and fastsubprocess and with C-based pdsh using a
fanout value of 128

V. SCALABLE EXECUTION FRAMEWORK

In order to make ClusterShell production-ready on 10k-
nodes clusters, we focused on both vertical and horizontal
scalability aspects.

Numerous optimizations spread over the whole codebase
brought scale-up improvements. Low memory and CPU foot-
print, as well as high performance I/O management have
been achieved by leveraging efficient I/O notification facilities
provided by the operating system.

Starting with ClusterShell version 1.6, the library is shipped
with a major horizontal scalability improvement, allowing
commands to be propagated to the targets through a tree of
gateways (or proxies).

A. Vertical scalability

Numerous I/O streams from the multiple SSH instances
that ClusterShell spawns can be a performance bottleneck.
ClusterShell addresses this issue with a specific I/O man-
agement layer. Basically, massively parallel applications such
as ClusterShell face the same problematics than the heavily
loaded servers that need to serve thousands of clients. In
this regard, ClusterShell uses non-blocking I/Os and the most
efficient /O management paradigms [13].

Within a library instance, I/O management is done by a
backend module, referred to as the engine. Several Engines
are implemented. Each one relies on an non-blocking I/O de-
multiplexing system call (such as select (2) orepoll (7))
and exports a well-defined interface to the upper layers of the
library. This is entirely transparent and the other layers are
fully engine-agnostic.

An engine provides primitives for registering and unreg-
istering read, write or exception events on file descriptors, as
well as an event loop entry point.

Each SSH process gets its standard input, output and error
pipes registered to the library engine when starting. The engine
processes the events from each I/O stream, and the potential
timers, in a single-threaded loop.

The best available backend is selected at runtime, given
that some OS-specific system calls might be unavailable on the
running platform. This strategy allows ClusterShell to leverage
the most efficient I/O notification subsystem[9] amongst the
ones available.

Three backends are currently implemented:

e High performance, Linux-specific epoll (7) -based
engine
Intermediate poll (2) -based engine

e Fallback select (2)-based engine

The most efficient backends being system-specific, this
redundancy allows ClusterShell to achieve high performance
while staying significantly portable. ClusterShell is avail-
able on a large number of systems and packaged into sev-
eral GNU/Linux distributions, including Red Hat® Enterprise
Linux (RHEL) through the Fedora Extra Packages for Enter-
prise 1{rinux (EPEL) repository, Fedora'?, Debian'? and Arch
linux'*.

Because of the system load generated by starting numerous
concurrent SSH processes, the performance differences be-
tween the epoll (7) and poll (2)-based engines is hardly
measurable. Therefore, further performance and scalability
improvements have been done on the horizontal aspects.

B. Horizontal scalability

Even though the most efficient engines can handle thou-
sands of I/O streams, the number of concurrent SSH processes
is a blocking limitation [10] due to the CPU and memory load
generated on the root node (from which commands are issued).

Thus, we designed and implemented a new distributed
propagation mode within the project. Commands are delivered
through a network of gateways and results are sent back to the
root node upward the created propagation tree.

The load gets shared between gateways, and the O(AN)
propagation time we observe with a flat-tree mode (A being the
unit execution time) becomes O(AKlogi(N)), with an arity of
K [18] (K being the number of branches a gateway connects
to). Figure 7 shows a schematic illustrating this principle.

O Command execution

—» Active SSH session
ADMIN

Gw1 Gw2 Gws3 Gw4

\

ONONO) O O

target[0-15]

OO

Fig. 7. Hierarchical command propagation scheme

12https://admin.fedoraproject.org/pkgdb/acls/name/clustershell
13http://packages.debian.org/fr/sid/clustershell
]4http://aur.archlinux.org/packages.php‘?ID:53476

We also implemented a grooming mode that allows gate-
ways to aggregate responses received within a certain time-
frame before transmitting them back to the root node in a
batch fashion. This contributes to reducing the load on the
root node by delegating the first steps of this CPU intensive
task to the gateways.

ClusterShell uses the same command sending techniques
it uses in “normal” mode to control the gateways. As a result,
the only requirement to setup a propagation tree is to have
ClusterShell installed on the nodes that are susceptible to act
as gateways, with an running SSH server. SSH was chosen as
a transport channel as it allows the propagation tree subsystem
to use already in-place ClusterShell mechanisms, and also
because of its reliability and security mechanisms. Neverthe-
less, the ClusterShell connector manager was designed with
modularity in mind to ease support of additional protocols
(such as RSH, PDSH or a ClusterShell-specific communication
protocol).

A lightweight communication protocol ensures proper ex-
changes within the tree, using serialized Python objects em-
bedded in a XML stream. Python coming with a built-in
incremental SAX parser (which is event-based), XML was a
natural choice to represent the data and to guide the execution
flow of the parser when they’re received.

1) Communication within the tree: Gateways are imple-
mented as ClusterShell-based state machines. Once instanci-
ated from the remote ClusterShell process, gateways receive
the topology to use, the targets to reach and the command to
execute. Gateways recursively contact the next hop machines,
deploying the propagation tree until final targets are reached.

The communication channel between the root node and a
gateway (as well as between two gateways) is a single SSH
connection that remains open until all results get collected and
sent back to the root node, which is also responsible for closing
the channel at the transport layer.

2) Adaptive propagation: Topology is expressed through
a configuration file on the root node as a list of possible
connections between source and destination nodesets.

Allow connections from admin nodes
to gateways
admin[0-2]: gateways[0-20]

Allow connections from gateways to
compute nodes
gateways[0-20]: compute[0-5000]

Fig. 8. Topology syntax

Mechanisms are implemented within ClusterShell to mark
a gateway as unreachable and exclude it from the topology.
Additionally, a work-stealing mechanism could be interesting,
to let gateways adjust the load in real time between each
other. The work by C. Martin [18] in that domain for the
TakTuk project stresses how valuable those mechanisms are
when dealing with heterogeneous clusters and grids.

C. Experiments

In this section, we evaluate the performance of the scalable
ClusterShell execution model, as introduced on section V-B.
To perform this experience, we used Curie, a 2 Petaflop HPC
Linux cluster operated by CEA. More precisely, we used the
Thin Nodes partition of Curie, which consists of 5040 dual-
socket nodes!> each containing two eight-core Intel® Sandy
Bridge EP (E5-2680) processors running at 2.7 GHz and
64 GB of RAM. Curie’s operating system is Bullx Linux Ad-
vanced Edition, based on Red Hat® Enterprise Linux 6.1. The
experiments have been done during a scheduled maintenance
so no job was running. We avoided any external perturbation
(such as the one that could be induced by NFS, LDAP, etc.)
by using a properly configured root superuser.

To measure the command propagation time, we remotely
execute a command with the help of the c1lush command-line
tool which is part of the ClusterShell framework. A command
option allows an easy setup of the topology configuration file
as seen on section V-B2.

For the experiment, we chose the command echo ok
which has a negligible execution time and still enables some
parsing code to be covered with a lightweight payload. The
figure 9 presents the execution time of this command on up
to 4828 remote nodes, with different execution models: basic
model with a fixed fanout value (sliding window), tree-based
propagation model with a varying number of gateways. pdsh
v2.18 was used as a reference (using a fanout of 128, which
we found to be the optimal value).

12 T T T T T T T
clush gw=0 —e—
clush gw=2 ---m---
—~ 10 | clush gw=4 .
5 clush gw=8 -x
5 pdsh
g 8r
&
]
E 6T
c
K]
5 4 r
(8]
(]
i
2 -
0 ﬁj '.X 1 L 1 L 1 L 1 L
0 1000 2000 3000 4000 5000

Number of nodes

Fig. 9. Performance comparison between clush v1.6 in basic mode (sliding
window), in distributed mode (1 level of n gateways) and pdsh v2.18 on Curie
(using ssh, fanout=128, command="echo ok™)

In basic execution mode (gw=0), clush’s curve looks
smoother than pdsh’s one. Also, execution time is slightly
lower, which is probably due to the event-based epoll (7)-
based engine.

In distributed mode, with a single level of gateways,
clush induces a constant overhead of about 300 ms, which
is slightly noticeable on this figure at the leftmost part of the
graph. This overhead is rapidly hidden by the gain of using
a distributed command propagation (at about 250 nodes). The

158510 bullx nodes

performance gain of the tree-based propagation is significant
when increasing the number of gateways.

VI. RELATED WORKS

Several solutions exist to distribute administration tasks on
parallel systems.

In terms of integration, these approaches can be classified
in two categories: those providing a library API, like func!®
or fabric!” (both in Python), and standalone applications
like pdsh [17] or gexec'®. ClusterShell combines both
approaches by providing a library and tools built on top of
it. Also, unlike other tools like gexec, ClusterShell doesn’t
require installation of an additional daemon on remote nodes.

In terms of scalability, existing solutions can also be classi-
fied in two categories, those that streamline direct commands,
like capistrano', and the ones that propagate commands
through a scalable (eg. hierarchical) scheme like taktuk [18].

Developed to facilitate production on large-scale systems,
ClusterShell leverages the best of both approaches. Indeed,
ClusterShell provides a convenient and scalable Python library
along with efficient administration tools, especially designed
for HPC clusters.

VII. CONCLUSION

In this paper, we have presented ClusterShell, a lightweight
Python framework used daily in production on the largest CEA
HPC Linux clusters. System administrators and developers at
CEA are working very closely, and this cooperation allowed us
to improve the ClusterShell library to address the wide area of
needs that administrators express for compute clusters as well
as storage, post-processing clusters and even server farms.

From a Python performance perspective, limitations we
faced were not the ones we initially expected. Also, by using
original and creative techniques, we managed to circumvent
common pitfalls and reached our scalability goals.

Today, ClusterShell is used as a building block for other
HPC software projects, such as Shine [4], an open source
solution designed to setup and manage the Lustre™ file system
on a cluster, MilkCheck [5], a highly parallel and flexible
service manager, and also Sequencer [22], an open source tool
to efficiently control hardware and software components in
HPC clusters.

We also presented the scalable execution engine of Cluster-
Shell and the performance experiments we conducted, reflect-
ing the success of our approach on large homogenous clusters.

REFERENCES

[1] Top 500 supercomputer sites. http://www.top500.org/, 2013.
[2] Oracle and/or its affiliates. LustreT™ 2.0 Operations Manual, 2011.
[3] David Beazley. Inside the Python GIL, 2009.

[4] CEA. Shine, Open Source Lustre management tool. http:/lustre-shine.
sourceforge.net/.

16https://fedorahosted.org/func/
7http://fabfile.org/
18http://www.theether.org/gexec/
19https://github.com/capistrano/capistrano

[5] CEA. MilkCheck, A Python-based distributed, highly parallel and
flexible service manager https://github.com/cea-hpc/milkcheck.

[6] CEA, CNRS and INRIA. CeCILL and Free Software. http://www.cecill.
info/index.en.html.

[71 Brooks Davis, Michael AuYeung, Matt Clark, Craig Lee, Mark Thomas,
James Palko, and Robert Varney. Lessons learned building a general
purpose cluster. In Proceedings of the 2nd IEEE International Conference
on Space Mission Challenges for Information Technology, SMC-IT 06,
pages 226-234, Washington, DC, USA, 2006. IEEE Computer Society.

[8] Allan R. Hoffman et. al National Academies. Supercomputers: Directions
in Technology and Applications. The National Academies Press, 1989.

[91 L. Gammo, T. Brecht, A. Shukla, and D. Pariag. Comparing and
evaluating epoll, select, and poll event mechanisms. In Proceedings of
the 6th Annual Ottawa Linux Symposium, volume 19, 2004.

[10] Guillaume Huard. Kanif, a TakTuk wrapper for cluster management
and administration. http://taktuk.gforge.inria.fr/kanif/, 2007.

[11] Red Hat Inc. et al. Red Hat Enterprise Linux 6 cluster administration,
configuring and managing the high availability add-on, 2011.

[12] Morris A. Jette, Andy B. Yoo, and Mark Grondona. Slurm: Simple linux
utility for resource management. In Lecture Notes in Computer Science:
Proceedings of Job Scheduling Strategies for Parallel Processing (JSSPP)
2003, pages 44—60. Springer-Verlag, 2002.

[13] Dan Kegel. The C10K problem. http://www.kegel.com/c10k.html, 2003.

[14] Donald Knuth. The Art of Computer Programming, Volume 3: Sorting
and Searching, Third Edition. Addison-Wesley, 1997.

[15] D. Libes. Choosing a name for your computer. RFC 1178 (Informa-
tional), August 1990.

[16] LLNL. Genders. https://computing.llnl.gov/linux/genders.html, 2007.
[17] LLNL. Pdsh. https://computing.llnl.gov/linux/pdsh.html, 2007.

[18] Cyrille Martin. Déploiement et controle d’applications paralléles sur
grappes de grandes tailles. PhD thesis, Institut National Polytechnique
de Grenoble, France, 2004.

[19] Hiroyuki Mishima and Jun Ni. Rocks Cluster Installation Memo.
Technical report, Medical Imaging HPC & Informatics Lab, 2008.

[20] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The hadoop distributed file system. In Proceedings of the
2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), MSST ’10, pages 1-10, Washington, DC, USA, 2010. IEEE
Computer Society.

[21] Simon Fraser University. ClusterAdmin - HPC wiki. https://wiki.cs.sfu.
ca/HPC/ClusterAdmin, 2010.

[22] Pierre Vignéras. Sequencer: smart control of hardware and software
components in clusters (and beyond). In Proceedings of the 25th
international conference on Large Installation System Administration,
LISA’11, pages 44, Berkeley, CA, USA, 2011. USENIX Association.

