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Abstract—We present a coupled model of temperature and
pressure waves applicable to photoacoustic trace gas sensors.
We discretize this model with finite elements using the Python-
based FEniCS project. To validate the generated code, we observe
optimal convergence rates to a plane wave solution in one and
two dimensions. Through the petsc4py package, we use the
scalable LU solver MUMPS and preconditioned Krylov methods
to perform the numerical linear algebra on a workstation and
explore scaling results results on the Baylor University cluster
Kodiak. Finally, we use the automated mesh adaptivity of FEniCS
to optimize the computation of heat flux along a portion of the
boundary, arriving at comparable accuracy to uniform refinement
using a factor of forty fewer cells.

I. INTRODUCTION

Currently, research on trace gas sensors is focused on the
development of portable, efficient, and cost-effective sensor
technologies that can be deployed in networks for large scale
monitoring of carbon dioxide and atmospheric pollutants, as
well as for non-invasive disease diagnosis using breath analysis
[1], [2], [3]. One such trace gas sensor is the Quartz-Enhanced
Photo-Acoustic Spectroscopy (QEPAS) sensor which employs
a quartz tuning fork to detect the weak acoustic pressure
waves generated by the interaction of laser radiation with a
trace gas [4]. More specifically, QEPAS sensors are based on
the following physical mechanisms. A laser generates optical
radiation at a specific absorption wavelength of the gas to
be detected. The laser beam is directed between the tines
of the tuning fork (see Figure 1). The optical energy that is
absorbed by the trace gas is transformed into vibrational energy
of the gas molecules, generating a temperature disturbance.
If the interaction between the laser and the trace gas is
sinusoidally modulated, this temperature disturbance is in the
form of a thermal wave. In addition, vibrational to translational
energy conversion processes in the gas molecules result in the
generation of a weak acoustic pressure wave, which can be
detected by the tuning fork. To amplify the signal detected
by the tuning fork, the modulation frequency of the laser
is chosen so as to excite a resonant vibration in the tuning
fork. Finally, since quartz is a piezoelectric material, this
mechanical vibration is converted to an electric current that can
be measured. Because the entire process is linear, the measured
current is proportional to the concentration of the trace gas. In

some experimental regimes, the tuning fork can also be used
to directly detect the thermal wave via the pyroelectric effect
[5].

Fig. 1. Schematic diagram of the experimental setup for a QEPAS sensor
showing the tuning fork (the U-shaped bar with two tines), two attached wires,
and the laser source focused between the tines of the tuning fork.

To date, all mathematical models of QEPAS sensors [6],
[7], [8], [9] have included damping in the model using an ad-
hoc approach that involves making experimental measurements
using the actual tuning fork being modeled. A major goal of
our ongoing research is to develop a more realistic model
of the damping in a QEPAS sensor. The primary source of
damping is viscous damping of the fluid in a boundary layer
surrounding the tuning fork. Therefore, in this paper we begin
the development a computational model of a QEPAS sensor
that realistically incorporates the effects of viscous damping
using a parameter that depends on the physical properties of the
fluid and is independent of the particular choice of tuning fork.
The model is based on a coupled system of partial differential
equations for the acoustic pressure and the temperature of
the fluid that was derived by Morse and Ingard [10]. This



coupled system generalizes the classical acoustic wave and
heat equations.

The purpose of this paper is to develop some of the high-
performance computational tools required to compute numer-
ical solutions of the coupled pressure-temperature equations.
We verify the correctness of the numerical implementation and
study its performance using an artificial plane-wave solution.
In future work, we will further develop the model and apply
the computational tools developed here to compute solutions of
the pressure-temperature equations for a QEPAS sensor. In this
way, we hope to showcase Python as a powerful environment
for applied mathematicians to deploy a numerical method for
a nontrivial problem of interest, validate the implementation,
and begin the search for scalable solvers with a minimum of
low-level code development.

We employ the Python interface to FEniCS to automate the
process of solving the coupled pressure-temperature equations
using the finite element method [11]. Our simulation results
show that even in two spatial dimensions we need to invoke
high-performance linear solver tools to compute the solution
on a sufficiently fine mesh. FEniCS offers convenient access to
the PETSc, Trilinos/Epetra, and uBlas linear algebra libraries
[12], [13], [14].

Because boundary layer phenomena are expected to play
a role in the performance of the sensor, it will be important
to use a much finer mesh near the surface of the tuning fork
than away from it. To automate the mesh refinement process,
we make use of the automated goal-oriented error control
algorithm implemented in FEniCS, which adaptively refines
the mesh so as to minimize the error in a quantity of interest.
In this paper, we choose the quantity of interest to be a local
average of pressure or the gradient of the temperature on the
surface of the tuning fork, since these quantities determine the
vibration of the tuning fork.

II. MATHEMATICAL MODEL

The interaction of laser radiation with the trace gas gener-
ates an acoustic pressure wave, P , and a thermal disturbance,
T . To model the effects of viscous damping and thermal
conduction in the gas Morse and Ingard [10], derived a coupled
system of pressure-temperature equations which generalizes
the standard acoustic wave and heat equations. These equations
are given by
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Here `v and `h are characteristic lengths associated with the
effects of fluid viscosity and thermal conduction, respectively,
c is sound speed, γ is the ratio of the specific heat of the gas at
constant pressure to that at constant volume, and α =

(
∂P
∂T

)
v

is
the rate of change of ambient pressure with respect to ambient
temperature at constant volume.

We model the interaction between the laser and the trace
gas using the source term, S, in equation (1a) given by

S(x, t) = C exp

(
−2[(x− xs)2 + (z − zs)2]

σ2

)
exp(−iωt) (2)

where C is a constant that is proportional to the concentration
of the trace gas to be detected, (xs, zs) are the coordinates of
the axis of the cylindrically symmetric Gaussian power profile
of the laser beam, σ is the beam width and ω is the frequency
of the periodic interaction between the laser radiation and
the trace gas. The modulation frequency, ω, is chosen so
as to excite a resonant vibration in the tuning fork. Since
S(x, t) = S(x) exp(−iωt) is periodic in time, so are the pres-
sure and temperature. Substituting P(x, t) = P (x) exp(−iωt)
and T (x, t) = T (x) exp(−iωt) into equations (1) we obtain
the coupled system of Helmholtz equations

− iβω
(
T − γ − 1

γα
P

)
− β`hc∆T = S (3a)

− γ(ω2 − i`vcω∆)(P − αT )− c2∆P = 0 (3b)

where β = α2γ2ω
γ−1 . Since complex numbers are not im-

plemented in FEniCS, we separate equations (3a) and (3b)
into real and imaginary parts. Setting T = T1 + iT2, and
P = P1 + iP2 while scaling (3b) by −i, we obtain a system of
four partial differential equations of the form Au = b, where

A =

 −β`hc∆ βω 0 −αγω2

−βω −β`hc∆ αγω2 0
αγ`vcω∆ −αγω2 −γ`vcω∆ γω2 + c2∆
αγω2 αγ`vcω∆ −(γω2 + c2∆) −γ`vcω∆

.
(4)

Note that equations (1) and (3) are valid in all spatial
dimensions. In this paper, we compute solutions in 1D, 2D,
and 3D.

III. AUTOMATING THE FINITE ELEMENT METHOD

The finite element method [15], [16] solves the weak form
of a PDE on a finite-dimensional space. These spaces are
constructed by first meshing the problem domain. In the case
of FEniCS, we use triangular or tetrahedral cells. The FEniCS
library DOLFIN [17], [18] provides a representation of these
meshes. It can mesh simple domains (e.g. cubes) as well
as read more complicated files from many third-party mesh
generators. Then, the discrete function space contains poly-
nomials on each cell of the mesh, enforced to be continuous
across element boundaries. Because of the FIAT project [19],
FEniCS is able to use arbitrary-order instances of a wide range
of elements, although for present purposes we will consider
only linear and quadratic Lagrange elements. DOLFIN uses
the FEniCS Form Compiler, ffc [20] to automatically generate
code that will iterate over the mesh cells and use the basis
functions to generate cell-wise contributions to the global
system matrix and right-hand side vector. Then, DOLFIN
provides access to many third-party solver packages to carry
out the linear solution and so determine the finite element
solution. In our case, we assemble PETSc [12] matrices and
then use petsc4py [21] to specify the various linear solver
options.



The first step of any finite element method is to translate the
given differential equation into the corresponding variational
problem: find u ∈ V such that

a(u, v) = L(v) ∀v ∈ V̂ (5)

where V is the trial space and V̂ is the test space. For example,
for the Poisson equation −∆u = f , the bilinear form is defined
by

a(u, v) =

∫
Ω

∇u · ∇vdx = 〈∇u,∇v〉.

This definition of the variational form can be directly
passed into the FEniCS Form Compiler in Python. The en-
tire finite element assembly process described above is then
automated in FEniCS. In Figure 2 we see a basic example of
this code for the Poisson problem with Dirichlet conditions
on the left and right sides of the square and homogenous
Neumann conditions on the top and bottom as demonstrated
in the FEniCS Tutorial [22].

from dolfin import *

# Create mesh and define function space
mesh = UnitSquareMesh(32, 32)
V = FunctionSpace(mesh, "Lagrange", 1)

# Define Dirichlet boundary (x = 0 or x = 1)
def boundary(x):

return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS

# Define boundary condition
u0 = Constant(0.0)
bc = DirichletBC(V, u0, boundary)

# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Expression(’exp(-(pow(x[0],2) + pow(x[1],2))’)
a = inner(grad(u), grad(v))*dx
L = f*v*dx

# Compute solution
u = Function(V)
solve(a == L, u, bc)

Fig. 2. FEniCS code for the Poisson equation on a square mesh. Note that
in FEniCS code the spatial coordinates x and y are referenced with x[0] and
x[1] respectively.

For our model, the bilinear form corresponding to (4) is

a(u, v) = β`hc〈∇T1,∇v1〉+ βω〈T2, v1〉
− αγω2〈P2, v1〉 − βω〈T1, v2〉
+ β`hc〈∇T2,∇v2〉+ αγω2〈P1, v2〉
− αγ`vcω〈∇T1,∇v3〉 − αγω2〈T2, v3〉
+ γ`vcω〈∇P1,∇v3〉+ γω2〈P2, v3〉
− c2〈∇P2,∇v3〉+ αγω2〈T1, v4〉
− αγ`vcω〈∇T2,∇v4〉 − γω2〈P1, v4〉
+ c2〈∇P1,∇v4〉+ γ`vcω〈∇P2,∇v4〉

and L(v) = 〈S, v1〉.

In Figure 3 we can see that except for modifications to
enable use of petsc4py for the linear solver to the solver
definition, the FEniCS code for our model closely resembles
that of the basic Poisson problem.

import sys, cmath
import petsc4py
petsc4py.init(sys.argv)
from petsc4py import PETSc
from dolfin import *
from time import time

opts = PETSc.Options()
opts.setFromOptions()

# Assign values to physical parameters

# Import mesh file and define boundary conditions

# Define mixed function space
V = FunctionSpace(mesh, "Lagrange", 1)
W = MixedFunctionSpace([V,V,V,V])

# Define variational problem
(T1,T2,P1,P2) = TrialFunction(W)
(v1,v2,v3,v4) = TestFunction(W)

S = Expression(’exp(-(pow(x[0],2) + pow(x[1],2))’)

a = ( B*lh*c*inner(grad(T1),grad(v1))
+B*w*inner(T2,v1)-a*g*w*w*inner(P2,v1)
-B*w*inner(T1,v2)+B*lh*c*inner(grad(T2),grad(v2))
+a*g*w*w*inner(P1,v2)-a*g*lv*c*inner(grad(T1),grad(v3))
-a*g*w*w*inner(T2,v3)+g*lv*c*w*inner(grad(P1),grad(v3))
+g*w*w*inner(P2,v3)-c*c*inner(grad(P2),grad(v3))
+a*g*w*w*inner(T1,v4)-a*g*lv*c*inner(grad(T2),grad(v4))
-g*w*w*inner(P1,v4)+c*c*inner(grad(P1),grad(v4))
+g*lv*c*w*inner(grad(P2),grad(v4)) )*dx

L = S*v1*dx

# Compute solution
u = Function(W)
A, b = assemble_system(aa, L, bcs)

# extract PETSc matrices
A_petsc = as_backend_type(A).mat()
b_petsc = as_backend_type(b).vec()
x_petsc = as_backend_type(u.vector()).vec()

# set up PETSc environment to read solver parameters
ksp = PETSc.KSP().create()
ksp.setOperators(A_petsc)
ksp.setFromOptions()
pc = PETSc.PC().create()
pc.setOperators(A_petsc)
pc.setFromOptions()
ksp.setPC(pc)

ksp.solve(b_petsc, x_petsc)
(T1,T2,P1,P2) = u.split()

Fig. 3. FEniCS code for the variational problem a(u, v) = L corresponding
to the pressure-temperature model in equations (3) with appropriate boundary
conditions defined by bcs. The mixed function space W is the Cartesian
product V × V × V × V .

If FEniCS is built with a parallel linear algebra back
end, such as PETSc or Trilinos, we can quickly implement
high performance tests in Python using the Message Passing
Interface (MPI). The mesh is automatically partitioned over
the processors, using tools such as Scotch [23] or ParMetis
[24], which means the Python code is unchanged as we switch
between serial and parallel runs.



IV. NUMERICAL RESULTS ON A WORKSTATION

In this section, we verify our FEniCS implementation of the
finite-element solution of the pressure-temperature equations
by comparison to a plane-wave solution of equations (3)
derived by Morse and Ingard [10]. Here we will be using a Dell
Precision dual eight-core Intel Xeon E5-2680 machine running
at 2.7GHz with 128GB of RAM shared between processors.
This machine is running Scientific Linux 6 with gcc 4.4.7,
FEniCS snapshot downloaded on 9/26/2013, PETSc 3.3-p6,
petsc4py 3.3.1, MUMPS 4.10 and Hypre 2.8.0b. All results
for plane-wave solutions are on the interval Ω1D = [0, 0.25],
the square Ω2D = [0, 0.25] × [0, 0.25] or the cube Ω3D =
[0, 0.25]× [0, 0.25]× [0, 0.25] where each length is measured
in meters.

If we assume that the pressure wave in free-space is of the
form

P (x) = eik·x, (6)

where k is the complex wave vector, and set S = 0 in equation
(3a) then the temperature, T , is the plane wave given by

T (x) =
iω(γ − 1)

(iω − `hck2)γα
eik·x, (7)

where k = |k|. Inserting equations (6) and (7) into equation
(3) and dividing by eik·x, we obtain a quadratic equation for
k2 whose solution is given by

k2 =
iω2

2Ωc2
1− iΥ− iγΩ∓Q

1− iγΥ
, (8)

where Ω = ω
c `h, Υ = ω

c `v and

Q =
√

(1− iΥ + iγΩ)2 − 4i(γ − 1)Ω.

The two signs in the definition of k correspond to particular
physical modes. The minus sign represents the propagational
mode while the plus sign represents the thermal mode. Here
we have chosen to work with the equations corresponding to
the propagational mode.

Most of the work up to this point has been independent of
the spatial dimension. FEniCS allows us to run the very same
code in 1D, 2D or 3D simply by changing to an appropriate
mesh and respecifying the boundary conditions. In order to
restrict our free-space plane-wave solution to a problem on a
bounded domain, we can use the exact solutions exact T1,
exact T2, exact P1, exact P2 on a given 1D, 2D or 3D
mesh to enforce the appropriate Dirichlet boundary conditions.
This is easily accomplished in FEniCS with the commands

bc1 = DirichletBC(W.sub(0), exact_T1, boundary)
bc2 = DirichletBC(W.sub(1), exact_T2, boundary)
bc3 = DirichletBC(W.sub(2), exact_P1, boundary)
bc4 = DirichletBC(W.sub(3), exact_P2, boundary)
bcs = [bc1, bc2, bc3, bc4]

where W.sub(0), W.sub(1), W.sub(2) and W.sub(3)
represent the to be approximated sub-solutions T1, T2, P1,
and P2, respectively, on the mixed vector space W.

To mimic a realistic problem, the following set of physical
parameters will be used for all tests in this paper:

`h = `v = 10−6 m
c = 300 m/s
ω = 3.3× 104 Hz
γ = 1.4

α = 8.8667 Pa/K.

Now that we have an exact solution in hand, we can verify
the accuracy of our method while also checking that it is
converging to the exact solution at the expected rate. For
polynomials of order p, we expect the error to be O(hp+1)
in L2. For our convergence tests, we use the sparse LU fac-
torization provided by Multifrontal Massively Parallel Solver
(MUMPS) to solve all of our linear systems [25], [26]. We
invoke MUMPS in FEniCS with its default options by passing
PETSc the command-line options

-ksp_type preonly
-pc_type -lu
-pc_factor_mat_solver_package mumps.

First we consider the 1D problem. In Figure 4 we plot the
relative error

Relative Error(u) =
‖u− uh‖
‖u‖

, (9)

where u represents the exact solution T1, T2, P1 or P2 and
uh is the corresponding finite element solution. We see that
for piecewise linear basis functions the method is converging
quadratically. Likewise, Figure 5 shows the method is O(h3)
if we switch to piecewise quadratic basis functions.

Figure 6 shows that for the 2D problem the method also
converges quadratically for piecewise linear basis functions as
we would expect.

Our convergence studies were performed using the
MUMPS solver, since that allows us to use the same solver
package on our workstation as on a cluster. Here, we report the
timings for solving the linear system (analysis, factorization
and back substition, but not the actual assembly). We plot
the timings for linears on an N × N mesh for several N
in Figure 7. The scaling in this figure seems to indicate that
the run-time is proportional to N3, which is compatible with
typical estimates for two-dimensional model problems. Similar
scaling was obtained for piecewise quadratics.

As our workstation has sixteen cores and FEniCS seam-
lessly partitions finite element meshes, it is natural to ask
how much speedup can be obtained simply by feeding the
problem to more cores on the workstation. Since sparse matrix
calculations are highly memory-bound, we do not expect
anything close to perfect speedup. In Figure 8, we actually
observe very good speedup using up to four cores, with some
modest speedup from additional cores when N = 512. Similar
speedup results were observed for N = 256 and N = 1024.
Prepending the program execution with mpirun -np <p>
is a small price to obtain this speedup from otherwise idling
cores on a desktop computer.
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Eventually, our research on sensor design will require
three-dimensional simulations of our pressure-temperature
equations. While sparse direct methods are highly competitive
for two-dimensional problems, the greatly increased bandwidth
and hence fill for three dimensions typically makes them
less competitive than iterative methods. To this end, we also
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Fig. 7. log - log plot of the run time (s) of the MUMPS solver with respect
to the mesh refinement parameter N . Here we are using piecewise linear
Lagrange basis functions.

have experimented with preconditioned Krylov methods using
PETSc, still for our two-dimensional problem. In particular,
we use GMRES with ILU preconditioning provided by Euclid
within the hypre package [27]. We found that, except on coarse
meshes, guaranteeing sufficient accuracy in the finite element
solution required a very tight GMRES tolerance. All of our
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N Iterations Time (s) T1 error
64 6 1.49e-01 1.20e+00
128 350 6.02e+00 3.10e-02
256 285 1.98e+01 7.69e-03
512 560 1.87e+02 1.94e-03
1024 1481 1.83e+03 7.82e-04

TABLE I. ITERATION COUNT, TIME, AND RELATIVE L2 ERROR IN THE
T1 VARIABLE FOR ILU(3)-PRECONDITIONED GMRES. THE RUN TIMES

ARE SOMEWHAT WORSE THAN FOR MUMPS, AND THE FINEST MESH
DOES NOT GIVE FULL FINITE ELEMENT ACCURACY.

results will use relative and absolute tolerances of 10−12, and
a GMRES restart parameter of 100.

First, we considered three levels
of fill passing in PETSc parameters
-ksp_type gmres
-pc_type hypre
-pc_hypre_type euclid
-pc_hypre_euclid_levels 3
-ksp_gmres_restart 100

In Table IV, we report for a range of N values the number
of GMRES iterations required to obtain convergence, the run
time (in seconds), and the relative L2 error in the T1 variable
computed by that method. After a surprisingly brief run for
N = 64, we see typical growth in the iteration count and
run-time as we refine the mesh. The timings are comparable
to, but somewhat larger than, the timings for MUMPS on the
same meshes. We also noticed that on the final mesh, the
L2 error of the finite element solution was not as small as
it was for MUMPS, so that further refinements of the already-
tight tolerance or different preconditioners altogether might be
required to produce the full finite element convergence rate.

We also considered a larger fill level, changing our fill level
-pc_hypre_euclid_levels 10

and found slightly different results, shown in Table IV. We
obtain full accuracy for the finite element solution and reduce

N Iterations Time (s) T1 error
64 193 1.72e+00 1.54e-01

128 75 6.00e+00 3.12e-02
256 – – –
512 238 1.83e+02 1.95e-03
1024 385 1.11e+03 5.07e-04

TABLE II. ITERATION COUNT, TIME, AND RELATIVE L2 ERROR IN THE
T1 VARIABLE FOR ILU(10)-PRECONDITIONED GMRES. FOR FINER

MESHES, THE ITERATION COUNT IS GREATLY REDUCED RELATIVE TO
ILU(3), ALTHOUGH THE RUN-TIME IS NOT AS SIGNIFICANTLY REDUCED.
ALSO, THE N = 1024 CASE GIVES A MORE ACCURATE FINITE ELEMENT
APPROXIMATION FOR T1 . WE NOTE THAT THE METHOD DIVERGED FOR

N = 256.

the iteration count on the finer meshes relative to three fill
levels. However, the cost of forming and applying the pre-
conditioner is now higher, so the savings in run time are not
as significant as the reduced iteration count might indicate.
Also, for N = 256, for some unknown reason, GMRES
diverged. We experimented with other sets of parameters.
We did not find any that performed better than these, and
found that many other parameter choices for restart size,
tolerance, and preconditioners gave much worse results such
as divergence and totally incorrect finite element solutions.
From our MUMPS-based results we conclude that the system
is possible to solve accurately, but from our GMRES-based
results we conclude that finding effective and efficient iterative
methods is still quite an open challenge.

V. DISTRIBUTED MEMORY RESULTS

We have also performed preliminary scaling studies in two
space dimensions on the Baylor University cluster Kodiak. Ko-
diak is a HP C3000BL system running CentOS 6.4. The cluster
contains 128 HP Proliant BL460C blades, each containing dual
quadcore 2.66GHz Intel Xeon 5355 processors and 16GB of
RAM. Kodiak has 100TB of disk storage and uses ConnectX
4X DDR Infiniband for the inter-connect. We have compiled
the 10/27/2013 snapshot version of FEniCS using Dorsal with
the Intel compiler suite version 13.1.1, PETSc 3.3-p7, petsc4py
3.3, MUMPS 4.10, SCOTCH 6.0.0 and Hypre 2.8.0b.

Our first study is a two-dimensional weak scaling study
using MUMPS. In this case, we begin with an N0×N0 mesh
on a single core of a single processor, where N0 = 256. Then,
we use a (

√
pN0×

√
pN0) mesh distributed over p processors,

where we assume p is a perfect square. On each node, we use
two or four processors. The timings are presented in Figure 9.
We see that, for larger numbers of processors, the run times
scale roughly linearly with p.

Since the bandwidth of the sparse matrix grows with the
problem size, LU factorization cannot be an optimal-order
process and we cannot expect flat run times as we increase
the processor count. The best scaling we could hope for is as
follows. For an N0 ×N0 mesh, leading to O(N2

0 ) unknowns,
sparse LU factorization in serial seemed to perform O(N3

0 )
work. We have O(pN2

0 ) unknowns on p processors. If the
sparse LU factorization scales similarly in parallel, our work
would be O(p

3
2N3

0 ). Divided over p processors, this would
lead to a growth of order

√
p work per processor, which is

somewhat better than our empirically observed O(p).
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Fig. 9. Weak scaling results for the MUMPS solver with a fixed 256× 256
problem size per processor and the number of processors on each node.

We have also performed a strong scaling study. Fixing N =
1024 (which corresponds to about 4 million degrees of freedom
in the system for pressure/temperature equations), MUMPS
was not able to perform the LU factorization using a single
core of Kodiak. Hence, we began at four nodes and added
processors for this fixed problem size. In Figure 10, timings
are shown. The final run, with 64 nodes, takes about one tenth
of the time required with 16 nodes, which amounts to about 65
percent parallel efficiency. We also note that the finite element
solutions obtained on each run had exactly the same accuracy
as the workstation run using the same mesh. For example, the
relative L2 error in T1 was 4.79× 10−4.

We have also considered strong scaling using Euclid in
hypre. As with MUMPS, we fixed a problem size of N = 1024
and increased the number of processors, p. In Table V, we
study using ILU with fill level 5, given with PETSc parameters

-ksp_type gmres
-pc_type hypre
-pc_hypre_type euclid
-pc_hypre_euclid_levels 5
-pc_gmres_restart 100

We see that after some growth, the iteration counts level
off as we increase the number of processors. Relative to one
processor, the 49 processor case amounts to a factor of ten
speedup, or about 20 percent efficiency. We were in fact able
to run on a single node of Kodiak, but we obtain much lower
parallel efficiency than with MUMPS. We also report the
relative error in T1 for comparison. Note that is is somewhere
between twenty percent and a factor of two larger than for the
direct method. So, we are losing some finite element accuracy.

In serial, increasing the fill level seemed to help with the
finite element accuracy, and we have considered strong scaling
with
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Fig. 10. Strong scaling results for the MUMPS solver for a fixed problem
size of 1024 × 1024 (about four million degrees of freedom) on a range of
nodes using one core per processor.

p Iterations Time (s) T1 error
1 948 5.04e+03 5.72e-04
4 2462 7.86e+03 1.07e-03
9 2332 3.17e+03 1.60e-03

16 2527 1.83e+03 8.52e-04
25 2332 1.61e+03 1.22e-03
36 2010 7.32e+02 1.17e-03
49 2271 5.04e+02 1.20e-03
64 1803 4.62e+02 1.06e-03

TABLE III. NUMBER OF PROCESSORS, ITERATION COUNT, TIME, AND
RELATIVE L2 ERROR IN THE T1 VARIABLE FOR HYPRE EUCLID

ILU(5)-PRECONDITIONED GMRES.

-pc_hypre_euclid_levels

set to 10 as well. These results are shown in Table V. This
stronger preconditioner scaled worse in parallel, as the iteration
counts, run time, and finite element accuracy in T1 all worse
for the for fill level 5. The parallel efficiency is only about 6
percent.

Given our accuracy issues, we did not attempt to weak
scale ILU to larger problems. Our results seem to indicate that
MUMPS is robust and gives a pathway to larger problems
than does ILU. However, three-dimensional problems remain
an open challenge since direct methods are unlikely to scale
well and we have yet to hit on an effective preconditioning
strategy.

VI. ADAPTIVE MESH REFINEMENT

So far, we have seen the tools FEniCS provides to automati-
cally generate the finite element code and access parallel solver



p Iterations Time (s) T1 error
1 385 7.68e+03 5.07e-04
4 2103 7.07e+03 6.55e-04
9 2474 4.13e+03 1.16e-03
16 2526 3.67e+03 2.61e-03
25 2340 2.25e+03 4.63e-03
36 3171 2.18e+03 3.15e-03
49 4157 2.08e+03 3.62e-03
64 4302 2.04e+03 5.89e-03

TABLE IV. NUMBER OF PROCESSORS, ITERATION COUNT, TIME, AND
RELATIVE L2 ERROR IN THE T1 VARIABLE FOR HYPRE EUCLID

ILU(10)-PRECONDITIONED GMRES.

algorithms. FEniCS provides many other useful features that
increase scientific productivity, and one of these is automated
adaptivity. Our goal is not simply to solve for the temperature
and pressure waves on the entire domain but rather to effi-
ciently approximate the heat flux as well as the magnitude of
the pressure wave on the surface of the tuning fork.

Rather than uniform refinement, some kind of adaptive
algorithm could be useful. An important strategy, developed
in [28], is called goal-oriented adaptivity. By solving dual
variational problems, Oden and Prudhomme were able to
generate an adaptive algorithm that optimizes the error in
some quantity of interest. In the simplest case, this quantity
of interest is a linear functional of the computed solution. For
example, we could consider the local average of the heat flux

M =

∫
Γ

∇T1 · n ds, (10)

where Γ is a section of the boundary and T1 is the real part
of the temperature.

Goal-oriented adaptivity gives an error estimate on the
quantity M(T1)−M(T1,h) where T1,h is the computed solu-
tion, and it requires solving the dual variational problem

a∗(z, v) = M(v) (11)

for all test functions v. The solution z acts as a weighting
function for the elementwise residuals in the error estimates.
When z is small, even a large residual might contribute
very little to the actual error in M . In the case of linear
partial differential equations, the dual variational problem just
amounts to solving a linear system with the transpose of the
original stiffness matrix.

The details of implementing goal-oriented estimation are
rather delicate and beyond the scope of this paper, but for-
tunately FEniCS provides tools to automate the process. The
high-level representation of the weak form in FEniCS can be
used to automatically derive the dual variational problem, and
the details of this implementation can be found in [29].

From the user’s perspective, getting started on goal-
oriented adaptivity in FEniCS is quite simple. This is done,
while still using a MUMPS solver, simply by replacing the
line

solver = PETScLUSolver("mumps")

with the commands
M = inner(nabla_grad([u0]), n) * ds(1)
solver = AdaptiveLinearVariationalSolver(problem, M)
prm = solver.parameters["linear_variational_solver"]
prm["linear_solver"] = "mumps"

where all nodes on the subdomain of interest Γ are marked
as 1 rather than the default 0 which explains the ds(1) in the
definition of the goal functional M .

Suppose we are working on a square mesh while letting Γ
in the definition of our goal functional (10) be the right edge
of this square. First we will refine the mesh uniformly and
calculate the value of the goal functional on each mesh. We
see in Table VI that from N = 64 on through N = 512, we
are converging linearly to the goal functional with respect to
relative error

Relative Error =
|M −Mh|
|M |

(12)

where M is the exact value of the goal functional and Mh is
the computed value.

N Relative Error Number of Cells Run Time (s)
8 1.87 128 0.027

16 1.93 512 0.042
32 1.59 × 10−1 2048 0.076
64 1.23 × 10−1 8192 0.277
128 6.36 × 10−2 32768 1.43
256 3.18 × 10−2 131072 8.37
512 1.59 × 10−2 524288 57.11

TABLE V. RELATIVE ERROR RESULTS IN THE GOAL FUNCTIONAL (10)
ON THE RIGHT EDGE OF THE SQUARE THROUGH UNIFORM MESH

REFINEMENT.

Now suppose we set the initial mesh of the adaptive code be
an 8×8 square for the same Γ used in the uniform refinement
test. The adaptive algorithm identifies and automatically refines
the region near the right edge (see Figure 11). After 50
iterations of adaptive refinement the relative error in the goal
functional is 1.78 × 10−2 with a final mesh of just 13, 188
cells and a complete run time of 24.75 seconds. This is a huge
improvement over the uniform mesh refinement which required
over 500, 000 cells to achieve approximately the same level of
accuracy.

This preliminary result suggests that goal-oriented adaptive
refinement will play an important role in future work on
approximating solutions of equations (3) with the Gaussian
source (2) around the 3D surface of the tuning fork.

VII. CONCLUSION

In this paper, we have seen how the Python interface of
FEniCS has provided a powerful tool for the simulation of a
nontrivial system of differential equations modeling trace gas
sensors. The high-level syntax makes developing and validat-
ing a complex model relatively straightforward. However, the
code generation and interface to high-performance tools means
that the result is not merely a prototype – only mild changes
to the boundary conditions and mesh source are required to



Fig. 11. The initial 8× 8 mesh (top) along with the adaptively refined mesh
(bottom) for the goal functional defined by (10).

change between dimensions, and the same code, with suitably
chosen solver parameters, runs seamlessly in parallel due to
the parallel solvers provided through the interface to PETSc.

Several topics will occupy our future study. We have seen
that linear solvers pose a considerable challenge even in two
dimensions. We plan to adapt preconditioners such as those
in [30] to our pressure-temperature equations and see if they
outperform current methods and scale to three-dimensions. Ad-
ditionally, FEniCS provides a rich set of features to couple our
current pressure-temperature simulation to vibrational models
for the tuning fork, resulting in even more complex systems
to solve.
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