
VarPy: A Python library for volcanology and rock
physics data analysis

Rosa Filgueira and Malcolm Atkinson
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, UK
{rfilguei, mpa}@inf.ed.ac.uk

Andrew Bell and Ian Main
School of GeoSciences
University of Edinburgh

Edinburgh EH8 9XP, UK
{a.bell, ian.main}@ed.ac.uk

Branwen Snelling
Department of Earth Sciences

University of Oxford
Oxford OX1 3AN, UK

{branwen.snelling}@univ.ox.ac.uk

Abstract—VarPy is an open-source toolbox which provides a
Python framework for analysing volcanology and rock physics
data. It provides several functions, which allow users to define
their own workflows to develop models, analyses and visualisa-
tions. The goal of the VarPy library is to accelerate the uptake of
computational methods by researchers in volcanology and rock
physics. It does this via two mechanisms:

• supplying a library of ready-made functions that are
generally useful; and

• providing a context for creating, sharing and comparing
additional functions.

We anticipate two groups of VarPy users:

• the majority who use functions already written and
in the library; they will predominantly arrange to use
sequences of these functions with their own parameter-
isations; and

• contributors, who, as well as using provided functions,
also want to write additional functions for their own use
or to add to the library.

Keywords—Python library, programming frameworks, volcanol-
ogy and rock physics data analysis, seismicity deformation data,
e-Infrastructures, scientific workflows.

I. INTRODUCTION

The increasing prevalence of digital instrumentation in vol-
canology and rock physics is leading to a wealth of data,
which in turn is increasing the need for computational analyses
and models. Today, these are largely developed individually by
each researcher. The introduction of a shared library that can
be used for this purpose has several benefits:

• when an existing function in the library meets a need
recognised by a researcher it is usually much less
effort to re-use it than develop ones own code;

• once functions are established and multiply used they
become better tested, more reliable and eventually
trusted by the community;

• use of the same functions by different researchers
makes it easier to compare results and to compare the
skill of rival analysis and modelling methods; and

• in the longer term the cost of maintaining these
functions is shared over a wider community and they
therefore have greater duration.

Python is a high-level interpreted programming language, with
capabilities for object-oriented programming. Although, there
are many software tools available for interactive data analysis
and development, there are no libraries designed specifically
for volcanology and rock physics data. Therefore, we propose
a new Python open-source toolbox called VarPy1 to facilitate
rapid application development for rock physicists and volca-
nologists, which allows users to define their own workflows to
develop models, analyses and visualisations.

VarPy is focussed on analyzing seismicity and deforma-
tion data (such as stress and strain measurements). Although
different in detail, the attributes of volcanic and rock phyiscs
data have many commonalities, hence the desire for a shared
library. We have taken the library style from the ObsPy [1]
library, which is very successful with seismologists2.

This proposal is triggered by our work on data assimilation
in the EFFORT (Earthquake and Failure Forecasting in Real
Time)3 project using data provided by the NERC CREEP-24

experimental project and as a test cases.

The library must fulfil two purposes simultaneously:

• by providing a full repertoire of commonly required
actions it must make it easy for volcanologists and
rock physicists to write the Python scripts they need
to accomplish their work, and;

• by wrapping operations it must enable the EFFORT
gateway to maintain the integrity of its data.

The paper is organised as follows. Section II explains why
we have selected Python for developing VarPy . Section III
presents the EFFORT project. Section IV explains the data
structures and main classes of VarPy. Section V presents
VarPy packages and modules. Section VI describes the types
of methods of VarPy and the algebra of operations. Sections
VII and VIII present two examples of using VarPy. Finally,
Section IX presents our conclusions and provides pointers for
future work.

II. WHY PYTHON ?

Python is a high-level programming language, interpreted
with capabilities for object-oriented programming. Python has

1https://bitbucket.org/effort/varpy/src
2http://docs.obspy.org
3http://www.effort.is.ed.ac.uk
4http://www.ucl.ac.uk/es/research/ripl/research/rock-physics

https://bitbucket.org/effort/varpy/src
http://docs.obspy.org

a simple, easy to learn syntax, emphasises readability and
therefore reduces the cost of program maintenance. Python
supports modules and packages, which encourages program
modularity and code reuse. Often scientists choose this lan-
guage to program their programs because of the increased
productivity it provides. Since there is no compilation step,
the edit-test-debug cycle is incredibly fast. Besides, Python
has very rich scientific computing libraries such as:

• ObsPy: Python library dedicated to provide a frame-
work for processing seismological data.

• SymPy: Python library for symbolic mathematics

• GeoPy: Python Geocoding Toolbox

• NumPy: Python library for array processing for num-
bers, strings, records, and objects

• SciPy: Python library of algorithms and mathematical
tools

More libraries can be found in5. As we mentioned above, there
are not any libraries designed for working with volcanology
and rock physics data. Therefore, our objective is to help
scientists who write methods, or components to be used in
methods, that will then be used in their own computers and/or
the EFFORT gateway. Notice that proposal of the VarPy
library does not attempt to replace functions provided by other
libraries, such as NumPy and SciPy. VarPy is complementary
to them.

III. EFFORT PROJECT

EFFORT [2] is a multi-disciplinary collaboration between
analytical geoscientists (School of GeoSciences, University of
Edinburgh (UoE)), experimental rock physicists (Department
of Earth Sciences, University College London (UCL)), and in-
formaticians (School of Informatics, UoE). Brittle rock failure
plays a significant role in the timing of a range of geophysical
hazards, such as volcanic eruptions; yet the predictability of
brittle failure is unknown. EFFORT aims is to provide a facility
for developing and testing codes to forecast brittle failure
for experimental and natural data. In the project, we have
developed the EFFORT gateway, which offers services for
collecting and sharing volcanology and rock physics data with
the intent of stimulating sharing, collaboration and comparison
of methods among the practitioners in the two fields. In
EFFORT we collect experimental data from controlled exper-
iments: rock physics experiments from the UCL laboratory,
sub-sea deformation experiments in the CREEP-2 project, and
volcanic monitoring data from INGV observatory Etna6 and
IGN observatory El Hierro7. We also generate synthetic rock
physics data to test the algorithms.

The EFFORT gateway, it offers facilities for running
analyses and models either under a researcher’s control or
periodically as part of an experiment and to compare the skills
of predictive methods. The gateway therefore runs code on
behalf of volcanology and rock physics researchers.

5https://pypi.python.org/pypi?:action=browse&show=all&c=385
6http://www.ct.ingv.it/en/
7http://www.02.ign.es/ign/main/index.do

One motivation for developing VarPy is to increase the
use of the EFFORT gateway. The VarPy library is intended to
make it much easier for those researchers to set up the code
they need to run. The library also makes it easier to arrange
that code is in a form suitable for running in the EFFORT
computational services. Care has been taken to ensure that the
library can also be used outside of EFFORT systems, e.g., on
a researcher’s own laptop

Figure 1 shows how the experimental data from observatories
and laboratories are transferred to the EFFORT gateway.
Geoscientists view and analyse data, contribute code, and run
models.

EFFORT Gateway

Fig. 1: The EFFORT gateway acts as hub for archiving,
analysing and monitoring different types of data during ex-
perimental runs.

IV. VARPY DATA STRUCTURES AND CLASSES

Most rock physics and volcanic time-series data belong to
one of two different classes: Event catalogue data (ECD) and
Sampled continuous data (SCD). Volcanic observatories and
rock physics laboratories can produce data of both classes in
a single experiment. ECD consist of a series of events (e.g.
acoustic emissions, earthquakes, volcanic eruptions) that occur
at discrete times and have a specific attributes (e.g. location,
depth, magnitude, duration). SCD consist of a series of times
at which a continuous variable has been measured, and the
value of that variable. The sample times are defined by the
instruments’ operator, and may (or may not) be evenly spaced
(e.g. daily, every second). Consequently, the ECD and SCD
from the rock physics laboratories are different from volcanic
observatories. We represent those datasets using four different
structures:

• Event catalogue laboratory data (ECLD)

• Event catalogue volcanology data (ECVD)

• Sample continuous laboratory data (SCLD)

• Sample continuous volcanology data (SCVD)

https://pypi.python.org/pypi?:action=browse&show=all&c=385

A volcanic observation may also have another data structure
called Eruption volcanic data (EVD), which represents a time-
series of volcanic eruptions, intrusions, or other events with
descriptions (e.g. type, size, duration).

__init__
__var_data
__remove_enviroment
display_figures
display_result
sim_datatype
__add_datatype
__update_datatype
__apply_model

id
figure_path
output
result
type
figures

Var_Data

__init__
display_datatypes
add_datatype
update_datatype
apply_model

type
scvd
ecvd
evd

Volcanic

__init__
display_datatypes
add_datatype
update_datatype
apply_model

type
scld
ecld

Laboratory

__init__
display_models
last_model_output
update_last_model_output
info_attributes
info_models

dataset
metadata
header
extra_data
outputs
models
selection_parameters
eruption_data

Generic_Data

__init__
update_model

type
outputs

Model

__init__
display_model_outputs

metadata
dataset
starting_parameters
likelihood
failure_ttime
mc
t_forc

Model_Output

inherencyinherency

composition composition

composition

* Package: Management
* Module: Core

Fig. 2: UML Class Diagram of VarPy core classes.

Figure 2 represents the UML class diagram of the core
module which contains the main classes of VarPy. This module
belongs to the management package (see Table I and Table II).
Var Data is an abstract class which contains the common
attributes and methods of Laboratory and Volcanic classes.
Users can not create instances of this class. The method
var data creates a new tree-directory (see Figure 4) to store
the input and the output files and figures. This tree-directory
is created under a parent directory which is by default the
current directory. The name of the parent directory is the
value specified by the ID parameter. This method is called
by Laboratory and Volcanic classes.

Laboratory and Volcanic are classes for handling rock
physics laboratory and volcanic observatory data. Both classes,
inherits Var Data attributes and methods. Volcanic class has
three main attributes (ecvd, scvd and evd), which are composite
objects. They store the three data structures that a volcanic
observatory could record. Initially, the three composite objects
are initialised empty, with out any values in their attributes.
Later, the user by using the different methods of this class,
can be used to add values to the attributes of those objects.
Furthermore, the scvd attribute is in fact a dictionary of com-
posite objects, because one volcanic observatory could have

more than one sample continuous volcanic data information
per station. Laboratory class has two main attributes (ecld,
scld), which are also composite objects and initialised empty.
A type attributed is used in both classes, for storing the type
of object in each case.

Generic Data is a class which contains several common
attributes and methods for the data structures (ecvd, scvd, evd,
ecld, and scld), including dataset (array), metadata (dictio-
nary), header (array), and models (dictionary). The dataset
attribute is used to store information about a data file. The
metadata attribute is used to store information about a meta-
data file. The header attribute is used to store the names of the
columns of the dataset attribute. Finally, the models attribute is
a composite object used to store the models’ outputs. To each
dataset of each data structure can be applied different models
several times, obtaining each time a new output. Those outputs
are represented by the class Model Output. Users can not
create instances of Generic Data and Model Output classes.

Figures 3 shows a schema of a Volcanic object, where its
main attributes are represented.

Volcanic	

(obj)	
 ecvd	

(obj)	

evd	

(obj)	

type	

dataset	

metadata	

header	

.

.

.

Mode	
 name:	

Model	
 (obj)	

Model	
 name:	

Model	
 (obj)	

Models	

(Dic:onary)	

type	

Output	

(List)	
 Model	

Output	

(obj)	

Model	

Output	

(obj)	

dataset	

metadata	

.
.
.

scvd	

(Dict	
 of	

obj)	

	

Fig. 3: VarPy Volcanic object.

In the following example, d1 Volcanic object has been created
by using the line 5 in Listing 1. This method needs an ID
as input, which is a string chosen by the user to help them
identify their experiments e.g. Tjornes ex1. As an output the
method sets up the environment for storing the initial data and
metadata information (as Figure 4 shows) and also returns an
d1 object. Line 6 loads the data and metadata into the ecvd
attribute so it will be useable for analysis.

1 from varpy.management import core
2 ID = ’Tjornes_ex1’
3 ecvd_data_file = Iceland_IMO_C1_95 . t x t
4 ecvd_metadata_file = Iceland_IMO_C1_meta . t x t
5 d1 = core.Volcanic(ID)
6 d1.add_datatype(e c v d , ecvd_data_file ,

ecvd_metadata_file)

Listing 1: A Volcanic object with ECVD attribute.

V. VARPY PACKAGES AND MODULES

VarPy functionality is provided through the packages repre-
sented in Table I.

Figure 5 and Table II show the modules for management,
data preparation, and analysis packages. Managment package

ID
Parent

DIRECTORY

Data

Metadata

file.txt

figures
.png

data.txt

metadata
.txt

Output

Figure

Fig. 4: VarPy tree-directory environment.

Package Functionality
varpy.managment Core classes
varpy.data preparation Filtering routines
varpy.analysis Analyzing filtered data routines
varpy.modelling Modelling routines
varpy.simulation Simulating routines for seismic data
varpy.statistics Statistical routines used by other rou-

tines
varpy.visualization Plotting routines
varpy.write Writing results routines

TABLE I: General VarPy packages.

contains the common methods and classes for VarPy (dis-
played in Figure 2). It includes the Volcanic and Laboratory
classes and methods for reading data and metadata files of
the five data structures introduced in Section IV. It also has
several methods for converting dates and times into different
formats. The data preparation package includes filters of
various kinds, like gap-filling, differentiation and integration.
The analysis package contains functions to analyze the filtered
data. Analysis routines include averages based on time, point
processes and distributions based on location.

VarPy management

data_preparation

analysis

core conversion data_feed

user_data_feed

data_conversion window

magnitudes
Package

module

Fig. 5: Modules for management, data preparation and anal-
ysis packages.

Figure 6 and Table III summarise the packages and modules
for modelling and simulation packages. Modelling gathers
models, like creep model, exp mle, iol mle or hyp mle, and
fits them to the filtered data. Those models return different rates

Module Functionality
core Handling VarPy objects and methods
conversion Converting dates and times into different

formats
data feed &
user data feed

Importing metadata and storing it into
VarPy object

data conversion Converting values to another type of
data

window Selecting a smaller sample based on a
single or on a combination of variables

magnitudes Calculating completeness magnitude

TABLE II: Description of modules for management, data
preparation and analysis packages.

according to the function applied, e.g. exp mle applies an expo-
nential function to the data. A completely description of those
models can be found at [3] and [4] works. Models applications
configures experiments that can be performed on the filtered
data. We define a VarPy experiment as the application of a
model to filtered data with some input parameters. VarPy has
defined two types of experiment:

• Single analysis: This applies a model to the filtered
data once. It can be classified in two types:
◦ Retrospective analysis: When the failure (also

called eruption) time is known. The output
represents how well the model explains the
data.

◦ Single forecast: When the failure time is not
known. The output not only explains how well
the model fits, it also predicts the failure time.

• Multiple analysis: This applies a model to the filtered
data several times. It can also be classified in two
types:
◦ Prospective forecast: The failure time is not

known, and the output is the prediction of the
failure time in real time.

◦ Retrospective forecast: Although the failure
time is known, it is simulated as not known.
The output represents the prediction of the
failure time, and we can check if the prediction
is correct or not with the real failure time.

The simulation package has several sub-packages with differ-
ent types of simulators for creating synthetic data: rock physics
seismic data, volcanic seismic data or earthquake data.

Sub-package Functionality
models Various models that can be fitted to data
model application Experiments with data and models: sin-

gle analysis and multiple analysis
lab data Rock physics seismic data simulators
volcanic data Volcanic seismic data simulators
earthquake Earthquake data simulators

TABLE III: Description of modelling and simulation sub-
packages.

VarPy modelling

simulation

creep_mle
models

model_
application

lab_
data

volcanic_
data

earthquake_
data

exp_mle iol_mle

hyp_mle cr_mle user_mles

experiments

ae

eruption volcanic_defm

volcanic_eq

eq etas

Fig. 6: Sub-packages for modelling and simulation packages.

Figure 7 and Table IV give an overview of the modules for
statistics, visualization and write packages. Statistics includes
statistical functions (e.g. likelihood functions) for generating
synthetic data and comparing models. It is heavily used by
functions in other packages. Visualization enables users to
plot filtered data, the results of experiments, simulated data
and models. It allows multiple fitted models to be plotted
against the data or against the experiments. It also plots model
comparisons. Finally, write package allows users to write the
results of experiments into text files. The names of these files
are descriptive of the results they contain. Their location is
automatically set inside the output directory inside the tree-
directory.

VarPy
likelihood

statistics

visualization

model_comparision rate

residuals poisson mags

write

model_plots windows_plots location_plots

mag_plots rate_plots scatter_plots

write_result

Fig. 7: Modules of statistics, visualization and write packages.

Package Functionality
statistics Assisting with the generation of syn-

thetic data, fitting models and compar-
ing models

visualisation Plotting filtered data, results of analyses,
simulated data and models

write Writing the results of analysis and ex-
periments into text file inside the tree-
enviroment

TABLE IV: Description of statistics, visualization and write
packages.

VI. ALGEBRA OF OPERATIONS

While designing VarPy, we have followed the Python Guide
Style8. This means that all the names of the packages, modules,
methods and parameters are in lower case. And the names of
the classes start in upper case. As follows, we are going to
describe the six types of methods that we have in our library:

• M0 method: Methods for creating either volcanic or
laboratory objects. This type of method receives an
identifier (ID) as an input data. It creates the new
object and the tree-directory explained in Section IV.

• M1 method: Methods for adding an attribute of an
object. This type of method receives data and metadata
files as input parameters. Itt modifies the object adding
the new attribute and copies the files into the tree-
directory.

• M2 method: Methods for modifying an attribute (or
several attributes) of an object. This type of method
receives an object as an input parameter. It returns an
object which is a (deep) copy of the input object with
the new modifications in some attributes but it does not
create another tree-directory. This type can be located
in different packages and modules depending on the
aim of the methods.

• M3 method: Methods for transforming data. This type
of method receives some data as input parameter.
It returns the transformed input data as an output
parameter. This type of method does not modify any
attributes of any object. They are called from other
types of methods for transforming input parameters,
or variables.

• M4 method: Methods for writing an attribute of an
object. This type of method writes into a file one
attribute of an object. The file is stored inside the tree-
directory. This type of method is implemented inside
the write package, inside the write result module. The
unique input parameter that this methods needs is the
object.

• M5 method: Methods for plotting an attribute of an
object. This type of method plots into a figure an at-
tribute of an object. The figure is stored inside the tree-
directory. This type of method is implemented inside
the visualization package. They need an attribute as
an input parameter

The idea behind this classification of methods is to be able to
build an algebra of operations as shown in Figure 8. In the
example, we create a new object called object1 applying k0
method which belongs to M0 method type. To object1 we apply
k1 method for adding an attribute. This attribute needs to be
modified. Therefore, k2 method is called, which belongs to M2
method type. Besides, we call from k2 method to k3 method
for transforming some parameters. As a result of k2 method a
new object called object2 is created. object2 has initially the
same attributes as object1. To object2 we apply the methods k4
, k7 and k8. The method k4 belongs to M2 method type. As a
results of k4 method we have a new object called object3 with

8http://www.python.org/dev/peps/pep-0008/

 http://www.python.org/ dev/peps/pep-0008/

the new updates in the attributes. Applying the method k5 to
object3 we write one of the attributes into a file inside the tree-
directory. Applying the method k6 to object3 we plot a figure
with the values of some attributes of this object. When we
apply the method k7, by using object2, we can still write into
a file the values of the attributes of object2. In the same way,
we apply the method k8 by using object2. Therefore, every
time that we apply an M2 method over an object, we have a
new one with updates applied to some attributes, and without
modifying the original object. This allow us, to always keep
the previous status of the object when we want to perform an
update to one attribute of an object.

Object1

 k2
M2_method Object2

k4
M2_method

k5
M4_method

k6
M5_method

Object3

k7
M4_method

k8
M5_method

file.txt

file.txt

figure.
png

figure.
png

Other
Input

Parmeters

Other
Input

Parmeters

k3
M3_method

Input
Parameter

Output
Parameter

k0
M0_method

ID

k1
M1_method

Data
File

Metadata
File

Fig. 8: Algebra of operations.

VII. EXPLORATION AND VISUALIZATION OF DATA

Through the following example, we explain how a user
can perform data exploration and visualization based on the
Tjornes fracture zone (Iceland) by using VarPy. This example
is the continuation of the Listing 1 shown in Section IV.
We assume that an d1 object has been already created and
seismicity data added as “earthquake catalogue volcanic data”
(ecvd attribute).

First, d1 object is filtered by selecting latitude and longi-
tude for events located in Iceland (see Listing 2).

1 #continuation of Listing 1
2 #Import more needed libraries
3 from varpy.data_preparation import window
4 from varpy.visualisation import rate_plots ,

mag_plots , iet_plots , map_plots ,
scatter_plots

5 #Boundary coordinates for Iceland
6 lon_min = -25.5
7 lon_max = -12.0
8 lat_min = 62.7
9 lat_max = 67.5

10 d1 = window.latlon(d1, lat_min , lat_max ,
lon_min , lon_max)

11 d1 = window.single_attribute(d1, ’depth’, -5,
50.0, ’ecvd’)

12 d1 = window.single_attribute(d1, ’magnitude’,
-1.0, 10.0, ’ecvd’)

Listing 2: Filtering data: Events located Iceland.

Later, a new d2 object is created after selecting a smaller
sample from the d1 object based on the magnitude variable
(see line 1 from Listing 3). Then, the regional epicentre map
is shown (see line 2 from Listing 3 and Figure 9).

1 d2=window.single_attribute(d1, ’magnitude’,
3.0, 10.0, ’ecvd’)

2 map_plots.plot_map(d2)

Listing 3: Show regional epicentre map of larger events.

Fig. 9: Regional epicentre map of large events: listing 3, line
2.

A new d3 object is created after filtering d1 data by selecting
a sub-set of events occurring in the Tjornes fracture zone by
latitude and longitude (see Listing 4)

1 #Boundary coordinates for Tjornes zone
2 lat_min_r1 = 65.5
3 lat_max_r1 = 67.5
4 lon_min_r1 = -20.0
5 lon_max_r1 = -16.0
6 d3 = window.latlon(d1, lat_min_r1 , lat_max_r1 ,

lon_min_r1 , lon_max_r1)

Listing 4: Filtering data: Sub-set of events by latitude and
longitude.

The next step is to check the quality of the d3 object by
examining the earthquake magnitude-frequency distribution as
Figures 10, 11 and 12 show. These are basic plots in the
style that has become normal in the preliminary assessment
of seismicity, so patterns in space and time can be quickly
detected, and the scaling relations and probabilities of different
magnitude events can be observed.

1 #Plot the magnitude time series
2 mag_plots.mag_mc_plot(d3)
3 #Plot the magnitude -frequency distribution
4 mag_plots.mf_plot(d3)
5 #Plot the stability as a function of cut-off

magnitude
6 mag_plots.bstab_plot(d3)

Listing 5: Quality check.

Finally, data exploration is performed on the d3 object to see
wether something interesting has been happening in the last
two years (see Listing 6), by selecting a sub-set time period,
and examining the time-series of magnitudes (see Figure 13)
and the earthquake rates (see Figure 14).

Fig. 10: Magnitude time-series showing completeness magni-
tudes: listing 5, line 2.

Fig. 11: Magnitude-frequency distribution discrete (blue) and
cumulative (red): listing 5, line 4.

Fig. 12: B-value 9stability as a function of cut-off magnitude:
listing 5, line 6

1 start = ’01-01-2012’
2 finish = ’01-01-2014’
3 d4=window.datetime(d3, start , finish)
4 d4=window.single_attribute(d4, ’magnitude’,

1.0, 10.0, ’ecvd’)
5 #Plot the time -series of magnitudes
6 mag_plots.mag_mc_plot(d4, colour=’datetime’)
7 #Plot the time -series of earthquake rates
8 rate_plots.ecd_rate_plot(d4)

Listing 6: Data Exploration.

Fig. 13: Plot the time series of magnitudes, coloured by time:
listing 6, line 6.

Fig. 14: Plot the time-series of earthquake rates (daily and
total): listing 6, line 8.

VIII. FORECASTING METHODS

In this Section we illustrate with an example how to apply
forecasting methods for analysing volcanic data from Mt. Etna
(Sicily) with both types of VarPy experiments, single analysis
and multiple analysis. In the example, we assume that an d1

9 B-value is the slope of the best fitting line on Figure 12. Users can judge
when the data is complete, i.e. when the line flattens at m 2.5

object is already created with ecvd, scvd, and evd attributes,
and the necessaries libraries have been imported.

First, d1 object is filtered by latitude and longitude to
include the “greater Etna area”, as line 6 of Listing 7 shows,
creating d2 object. Once filtered the data, a smaller period of
time is selected by using line 10 of Listing 7, getting d3 object.

Then, a single forecast analysis is applied to ecvd attribute
of d3 object, by using inverse omori’s law (iol mle) model
(see line 1 in Listing 8). Once the model has been applied, the
output of the analysis can be printed with the output parameters
(see line 2 of Listing 8, and Figure 15). There are several model
plots available in VarPy. Lines 4 and 6 of Listing 8 are two
examples of them. The first plot, as Figure 16 shows, represents
how well the model explains (red) the data (black). In this
case a clear accelerating trend of cumulative event number
with time can be seen in then data and the best fit. This could
be an indication of an impending eruption. The second plot,
Figure 17, represents the earthquake rates (blue points), best-
fit model (red), and boot-strapped confidence limits, which in
this example is 95%.

1 lat_min = 37.5
2 lat_max = 37.9
3 lon_min = 14.7
4 lon_max = 15.3
5 #Select data by latitude and longitude
6 d2=window.latlon(d1, lat_min , lat_max , lon_min

, lon_max)
7 start = ’01-06-2011’
8 finish = ’01-01-2013’
9 #Select data by time period of interest

10 d3=window.datetime(d2, start , finish , ’ecvd’,
’evd’, ’scvd’)

Listing 7: Filtering and selecting data.

1 d4 = experiments.single_analysis(d3, ’ecvd’, ’
iol_mle’, t_min=’01-08-2011’, t_max=finish ,
mag_comp=’GFT’)

2 d4.ecvd.display_models()
3 #Show best -fit model and data
4 model_plots.model_plot(d4, ’ecvd’, ’iol_mle’,

plot_type=’cumulative’)
5 #Show earthquake rates , best -fit model , and

confidence limits
6 model_plots.model_error_plot(d4, ’ecvd’, ’

iol_mle’)

Listing 8: Single analysis.

model name: iol_mle
model type: single_forecast
model outputs:
-- Dataset: [1107.45637955 700.57012416 1.22779809]
-- rate_func ['iol_rate']
-- parameters ['k', 'tf', 'p']
-- total_func ['iol_total']
-- likelihood: -457.780086675
-- failure time: 01-07-2013
-- mc: None
-- t_forc: None
starting parameters
-- initial_parameters [50.0, 1038.0, 1.1]
- - - - -
Fig. 15: Output of single forecast analysis: listing 8, line 2.

Fig. 16: Model plot for showing best-fit model and data
analysis: listing 8, line 4.

Fig. 17: Model plot for showing earthquake rates, best-fit
model, and confidence limits: listing 8, line 6.

Finally, a multiple retrospective forecast analysis is applied to
the d3 object. The iol mle model is applied every two days
(t step=2) between the initial day (t min) and the last day
(t max). The idea of this analysis is to simulate the evolving
forecast that would result from data that was being producing
in real-time. Every two days, the iol mle model is applied to
the collected data with no knowledge of the following data.
Figure 18 displays the output of this analysis (see Listing 9).

1 d5 = experiments.multiple_analysis(d3, ’ecvd’,
’iol_mle’, t_min=start , t_max=finish ,

mag_comp=’GFT’, t_step=2.0)
2 d5.ecvd.display_models()
3 #Show best -fit model and data
4 model_plots.model_plot(d5, ’ecvd’, ’iol_mle’)

Listing 9: Multiple analysis.

Figure 19 shows how well the model fits (blue) to the data
(black). Note that in line 4 of Listing 9 the cumulative option
has not been used. Therefore, in this case, this routine also
determines the plot rates and reports the correct “daily rate”
(green bars). This figure illustrates details of the temporal
clustering and the intermittent nature of the data. These

model name: iol_mle
model type: retrosepective_forecast
model outputs:
-- Dataset: [687.93558343 662.00911965 1.15153509]
-- rate_func ['iol_rate']
-- parameters ['k', 'tf', 'p']
-- total_func ['iol_total']
-- likelihood: -436.358732726
-- failure time: 24-06-2013
-- mc: 1.2
-- t_forc: 734867.0
starting parameters
-- initial_parameters [50.0, 972.0, 1.1]
- - - - -

Fig. 18: Output of multiple retrospective forecast analysis:
listing 9, line 2.

characteristics control the predictability much more than the
information from the cumulative curve, so both need to be
evaluated.

Fig. 19: Model plot for showing best-fit model, daily rates,
and data analysis: listing 9, line 4.

IX. CONCLUSION

In this work we have presented a new Python open-source
toolbox called VarPy, which is the first library designed
specifically for volcanology and rock physics seismicity data.
VarPy provides a full repertoire of commonly required actions,
like analysis and modelling in real time and retrospective.
VarPy offers capabilities for data exploration, data analysis
and quality checking. With VarPy users can define their own
workflows to develop models, analyses and visualizations.
VarPy enables an easy method to analyze seismicity data,
and standardizes different tasks like standards for data format,
methodologies for processing data. When researchers use the
same functions it is easier to compare the results and perfor-
mance of models. Additionally, the cost of maintaining the
library is shared among the longer community.

With VarPy we encourage the collaboration between rock
physicists and volcanologists researchers. Researchers could
also contribute to VarPy adding new models, simulators of
seismic data, or filters.

VarPy is still under development, and we continuously aim
to improve it. In the coming months we will add new models,
and analysis facilities. It is an open source project and we
would welcome assistance with its development.

ACKNOWLEDGMENT

The research described here has been supported by the NERC
UK Grant (NE/H02297X/1) and the EC project VERCE (RI-
283543).

REFERENCES

[1] M. Beyreuther, R. Barsch, L. Krischer, T. Megies, Y. Behr, and J. Wasser-
mann, “ObsPy: A Python Toolbox for Seismology,” SRL, vol. 81, no. 3,
pp. 530–533, may 2010.

[2] Rosa Filgueira, Malcolm Atkinson, Andrew Bell, Ian Main, Steve Boon,
Christopher Kilburn and Philip Meredith, “escience gateway stimulating
collaboration in rock physics and volcanology,” 2014, iEEE escience
2014.

[3] Andrew F. Bell, John Greenhough, and Michael J. Heap, and Ian
G. Main, “Challenges for forecasting based on accelerating rates of
earthquakes at volcanoes and laboratory analogues,” 2011, geophysical
Journal International.

[4] Andrew F. Bell, Mark Naylor, and Ian G. Main, “The limits of pre-
dictability of volcanic eruptions from accelerating rates of earthquakes,”
2013, geophysical Journal International.

	Introduction
	Why Python ?
	EFFORT project
	VarPy data structures and classes
	VarPy Packages and Modules
	Algebra of operations
	Exploration and visualization of data
	Forecasting methods
	Conclusion
	References

