Scientific data analysis and visualization at scale in
VTK/ParaView with NumPy

Utkarsh Ayachit, Berk Geveci
Kitware, Inc.
28 Corporate Drive
Clifton Park, NY 12065

Abstract—The Visualization Toolkit (VTK) is an open-source,
freely available software system for 3D computer graphics, data
processing and visualization written primarily in C++. ParaView
is an end-user application based on VTK that is designed for
remote, distributed data processing and visualization at scale on
large supercomputers and desktops alike. Traditionally, adding
new algorithms for data processing in VIK and ParaView has
required users to write C++ code. With widespread adoption
of Python (fueled by NumPy and SciPy) within the scientific
community, there is growing interest in using Python to do
parts of the data processing workflow, leveraging the large set
of utility functions provided by these packages. In this paper,
we discuss the mechanisms for doing the same. Python modules
newly added to VTK make it possible to seamlessly transfer data
objects between VTK and NumPy, with minimal copying, while
preserving relationships between data elements, including mesh
connectivity. Subsequently, scripts that combine VTK filters and
NumPy ufuncs can be easily supported even when executing at
scale in parallel and distributed environments on HPC systems.

I. INTRODUCTION

The Visualization Toolkit (VTK)[1] is an open-source,
freely available software system for 3D computer graphics,
data processing and visualization. VTK consists of a C++
class library and several interpreted interface layers including
Tcl/Tk, Java, and Python. VTK supports a wide variety of vi-
sualization algorithms including: scalar, vector, tensor, texture,
and volumetric methods; and advanced modeling techniques
such as: implicit modeling, polygon reduction, mesh smooth-
ing, cutting, contouring, and Delaunay triangulation. VTK has
been used as the underlying data processing engine for several
applications including ParaView[2], Vislt[3], and MayaVi[4].
The reason for this has been VTK’s data model that can
describe complex data structures encountered in scientific
domains easily and efficiently, as well as VTK’s pipeline-based
execution model, that enables demand-driven execution with a
rich request qualification vocabulary to control what data gets
read in and processed.

ParaView is an open-source, multi-platform data analysis
and visualization application built on top of VTK. Besides
adding the graphical interface for setting up visualization
pipeline, ParaView also manages the remote client-server and
distributed processing infrastructure, enabling data analysis
and visualization at scale from desktops to supercomputing
clusters.

Using Python as the scripting language for application to
bind together components is nothing new. Python has been
the de-facto scripting language for both VTK and ParaView

since the early days. Using Python to describe the pipeline
connections between processing modules is popular for both
these tools. Besides such batch execution modes, ParaView
also uses Python scripting for enabling macros to provide
shortcuts for user interactions in the user interface.

In past decade, with large community efforts behind
SciPy[5] and NumPy[6], Python has evolved into more than
just a scripting language to put things together. The powerful
N-dimensional array processing infrastructure with a large
set of linear algebra, Fourier transform, and random number
capabilities has made writing data processing code in Python
a practical and efficient solution.

As a result there has been an increasing interest in writing
processing modules (or algorithms) in VTK and consequently,
in ParaView using Python and NumPy. In this paper we will
discuss the enhancements to VTK that enable seamless data
flow between VTK data objects and NumPy arrays.

Section II provides an overview of the VTK data model
and how it differs from NumPy’s multidimensional array. In
Section III we walk through various examples that illustrate
the interoperability between VTK and NumPy with discussion
on the underlying implementation.

II. UNDERSTANDING DATA IN VTK

NumPy relies on an array centric data model. At its core
is the ndarray, which is a homogeneous, multidimensional
array. This a surprisingly flexible view of the data which when
used along with the slicing, indexing, and shape manipulation
techniques can be used for solving a wide array of mathemat-
ical and statistical problems.

While array-based operations are indeed useful for data
analysis and visualization in domains targeted by VTK and
ParaView (e.g. structural analysis, fluid dynamics, astro-
physics, and climate science), several of the popular techniques
require additional information about the structure of the el-
ements e.g. the mesh structure, including the geometry and
topology (what are the points? and how are they connected
to each other?). For example, for computing a gradient of a
variable defined on points in an unstructured mesh, we need
to know the now the connectivity i.e. how the points are con-
nected together to form the cells, from which we can deduce
the neighbouring points needed in gradient computation.

The most fundamental data structure in VIK is a data
object. Data objects can either be scientific datasets such
rectilinear grids or finite elements meshes or more abstract data

structures such as graphs or trees. These datasets are formed
of smaller building blocks: mesh (topology and geometry)
and attributes. VTK provides rich collection of specializations
of data object that leverage inherent structure in the mesh
to optimize for both memory and performance for common
operations such as accessing elements, and neighbours. Along
with preserving relationships between elements in a dataset,
there are cases (e.g. adaptive-refinement meshes (AMR), and
assemblies encountered in structural analysis) where relation-
ships between datasets, and not just elements in a dataset,
are as important and necessary for visualization. Such use-
cases are supported by composite datasets in VTK, which are
collections of datasets themselves. Currently, there are over
20 concrete sub-types of the VTK data object that used for
representing and processing various datasets.

Besides the mesh, the VTK data object also stores attributes
for elements in the mesh for example, there may be data values
defined at sample points (point data attributes) as well as over
interpolation elements or cells (cell data attributes). Represent-
ing the mesh and the complex relationships between elements
as well as datasets can be challenging in a multidimensional
array-based model. These element attributes themselves, how-
ever, are not much different from multidimensional arrays
encountered in NumPy. We use this similarity as the stepping
stone for the inter-operation between NumPy and VTK data

types.

III. VTK-NUMPY INTEGRATION
A. Accesssing arrays

Let’s start with a simple example: accessing attribute arrays
in Python. First, let’s create a basic pipeline to produce a VTK
data object. For this, we will use the Python scripting API for
VTK.

>>> import vtk
create a data source.
>>> w = vtk.vtkRTAnalyticSource ()
execute this

>>> w.Update ()

) ated data ob t

>>> dataRAW = w.GetOutputDataObject (0)

ss the ge

>>> print type (dataRAW)
<type ’vtkobject’>

The dataRAW is a Python wrapped instance of the VTK
data object. Using the Python wrapping, we can indeed access
the C++ API to access the data elements. However, that’s not
the most elegant approach as in that case any operation over
all the elements would entail looping over the elements in
Python which can have serious performance impacts. Instead,
we would like to use NumPy, which uses highly optimized C/-
Fortran routines for data iteration to alleviate this performance
hit.

To work well with NumPy, VTK provides a new package,
vtk.numpy_interface. To wrap a raw VTK data object
into a Python object for NumPy interoperability, we do the
following:

>>> from vtk.numpy_interface \
import dataset_adapter as dsa
>>> import numpy as np

wrap the data object.

>>> data = dsa.WrapDataObject (dataRAW)

>>> print type (data)
<class ’'vtk.numpy_interface.dataset_adapter.DataSet’
>

>>> print type (data.PointData)
<class ’'vtk.numpy_interface.dataset_adapter.
DataSetAttributes’>

! ~ I +
on c Jo t

>>> print data.PointData.keys
["RTData’]

>>> print data.PointData[’RTData’]
[60.76346588 85.87795258 72.80931091 ...,
67.51051331 43.34006882 57.1137352]

The wrapped data object provides properties PointData,
CellData, etc. that provide access to the attribute arrays
associated with various elements in the dataset. These return
an object of type DataSetAttributes that implements the
dictionary interface providing access to the arrays available as
well as their names.

Let’s take a closer look at the array:

>>> rtData = data.PointData[’RTData’]

>>> print type (rtData)

<eclass ’'vtk.numpy_interface.dataset_adapter.VIKArray
s

>>> print isinstance(rtData, np.ndarray)
True

As we can see, the array object returned is of the type
ndarray. In other words, it a NumPy array. Under the covers,
it uses numpy . frombuffer to pass the raw C-pointer from
the VTK array to NumPy to avoid creating an in-memory copy.
Since it is a NumPy array, we can now use any of the NumPy
and SciPy routines to operate on this array.

using ufuncs (universal functions)

>>> np.max (rtData)
VTKArray (276.8288269042969, dtype=float32)

>>> np.mean (rtData)

VTKArray (153.15403304178815)

using operators

>>> rtData / np.max(rtData)

VIKArray ([0.21949834, 0.31022042, coop
0.15655909, 0.20631427], dtype=float32)

Instead of directly using ufuncs from NumPy, for now
let us stick with accessing the ufuncs from algorithms
module provided by VTK. The need for this indirection will
become clear when we look into composite datasets and
parallel execution. Thus, the above code can be rewritten as
follows:

>>> from vtk.numpy_interface \
import algorithms as algs
using ufuncs (ur 2l £ -t
>>> algs.max (rtData)

VTKArray (276.8288269042969, dtype=float32)

s)

>>> algs.mean (rtData)
VTKArray (153.15403304178815)

i ing ope ors
>>> rtData / algs.max (rtData)
VTKArray ([0.21949834, 0.31022042, ...,

0.15655909, 0.20631427], dtype=float32)

We can also pass the array computed in Python back to
VTK.

>>> result = rtData / algs.max(rtData)
>>> data.PointData.append(result, "Result")

This data can be pass back into the VTK pipeline be
setting it as an input to another filter.
>>> contour = vtk.vtkContourFilter ()
>>> contour.SetInputData (data.VIKObject)

note d S k

As with bringing data into NumPy, these methods try to
avoid creating a new copy of the data array is possible. Since
VTK expects a fixed ordering for data arrays, however, in
certain cases, deep copy becomes necessary. This is handled
within the implementation. When not deep copying, the im-
plementation ensures that a reference a held on to the NumPy
array so that it does not get garbage collected until the data
object is released by VTK. This is necessary since VTK uses
its own reference counting mechanism for managing object
allocations.

B. Accessing arrays in composite datasets

Composite datasets are datasets comprising of other
datasets. Let’s consider a multi-block dataset consisting of two
blocks.

>>> s = vtk.vtkSphereSource ()
>>> s.Update ()
>>> sdataRAW = s.GetOutputDataObject (0)

>>> w = vtk.vtkRTAnalyticSource ()
>>> w.Update ()
>>> wdataRAW = w.GetOutputDataObject (0)

>>> mbRAW = vtk.vtkMultiBlockDataSet ()
>>> mbRAW.SetBlock (0, sdataRAW)
>>> mbRAW.SetBlock (1, wdataRAW)

>>> wdata = dsa.WrapDataObject (wdataRAW)
>>> mb = dsa.WrapDataObject (mbRAW)

for

>>> sdata.PointData.keys ()
["Normals’]
>>> wdata.PointData.keys ()
["RTData’]

In this case, each block in the multi-block dataset has a
different set of arrays for PointData. We can of course iterate
over all blocks in the multi-block. In that case, we are dealing
with one dataset at a time and hence we can perform array
operations as in Section III-A.

counter = 0

for d in mb:
print "Block", counter, d.PointData.keys ()
counter += 1

Block 0 [’Normals’]
Block 1 [’'RTData’]

numpy_interface.dataset_adapter, however
makes it possible to access the arrays directly on the wrapped
multi-block dataset.

>>> print mb.PointData.keys ()
["Normals’, ’'RTData’]

>>> print mb.PointData

<vtk.numpy_interface.dataset_adapter.
CompositeDataSetAttributes instance at
0x1193feb5a8>

>>> mbrtData = mb.PointData["RTData"]

>>> print type (mbrtData)

type (mb.PointData[’RTData’])

<class ’'vtk.numpy_interface.dataset_adapter.
VTKCompositeDataArray’>

>>> isinstance (mbrtData, np.ndarray)
False

In this case, instead of getting the DataSetAttributes
instance, we get a CompositeDataSetAttributes in-
stance. CompositeDataSetAttributes exposes an ar-
rays list which is a union of all the arrays available on all
the blocks in the dataset. Naturally, you’d expect to perform
operations on the arrays. However, the returned arrays of
the type VIKCompositeDataArray which no longer is a
ndarray. Since each block in a composite dataset can have
different sets of arrays with different number of elements in
them, it cannot be represented as a single multidimensional
array. However, it supports the usual arithmetic operators for
addition, subtraction, etc. At the same time, the algorithms
module wraps several of the ufuncs provided by NumPy to
properly handle iterator over VIKCompositeDataArray.
Hence, the code for earlier still continues to work. This
is one of the reasons why we go through this indirection,
rather than directly using NumPy ufuncs. Implementation wise,
algorithms module does little more than decorate the
NumPy ufuncs with code to handle iteration over composite
dataset (and distributed processing, explained later).

>>> algs.max (mbrtData)
276.82882690429688

>>> algs.mean (mbrtData)
VTKArray (153.15403304178815)

>>> result = mbrtData / algs.max (mbrtData)
>>> mb.PointData.append(result, ’Result’)

How append works in the code above is trickier than
it appears at first glance. Notice that RTData array is only
available on the second block, and hence all the operations
only make sense on the second block. So one would expect
the Result array to be added only to the second block in the
multi-block dataset as well.

counter = 0
for d in mb:
print "Block", counter, d.PointData.keys()

counter += 1

Block 0 [’Normals’]
Block 1 [’RTData’, ’"Result’]

To make this possible, we use a special placeholder called
NoneArray for every location where the array is missing
in the traversal of the multi-block dataset. NoneArray
implements all the standard operators to return a NoneArray.
Also, all the ufuncs implemented in algorithms
module handle operations with NoneArray appropriately.
Finally, VTKCompositeDataArray.append handles
NoneArray by skipping the blocks where a NoneArray
is present. Thus, users can continue to work with arrays in
composite-datasets as without explicitly handing them.

C. Indexing and slicing arrays

VTKArray as well as VTKCompositeDataArray sup-
port the same indexing/slicing abilities as any NumPy array.

>>> rtDatal[0]
60.763466

>>> rtData[-1]
57.113735

>>> rtData[0:10:3]
VTKArray ([60.76346588,
94.97672272,

95.53707886,
108.49817657], dtype=float32)

>>> rtData + 1
VIKArray ([61.76346588,
44.34006882,

86.87795258, ...,
58.1137352], dtype=float32)

>>> rtData < 70
VTKArray ([True , False, False, ...,
dtype=bool)

True, True],

7 e
>>> avector = algs.gradient (rtData)

>>> algs.shape (rtData)
(9261,)

1O

>>> algs.shape (avector)
(9261, 3)

>>> avector[:, 0]
VTKArray ([25.69367027,
-5.77147198,

6.59600449, ...,
13.194479947])

A few things to note in this example:

e Single component arrays always have the following shape:
(ntuples,) and not (ntuples, 1).

e Multiple component arrays have the following shape:
(ntuples, ncomponents).

e Tensor arrays have the following shape: (ntuples, 3, 3).

e The above holds even for images and other structured
data. All arrays have 1 dimension (1 component arrays),
2 dimensions (multi-component arrays) or 3 dimensions
(tensor arrays).

It is possible to use boolean arrays to index arrays. So the
following works just as well:

>>> rtData[rtData < 70]

VIKArray ([60.76346588, 66.75043488, ...,

55.39360428,
43.34006882,

67.51051331,
57.1137352 1, dtype=float32)

>>> avector[avector[:,0] > 10]

VIKArray ([[25.69367027, 9.01253319,
7.51076698],
[13.1944809 , 9.01253128, 7.51076508],
[25.98717642, -4.49800825, 7.80427408],
[12.9009738 , -16.86548471, -7.80427504],
[25.69366837, -3.48665428, -7.51076889],
[13.19447994, -3.48665524, -7.51076794]1])

VTKCompositeDataArray is a collection of
VTKArray instances corresponding to each block in
the composite dataset. In needed, one can individually access
the arrays of each block as follows.

>>> mbrtData.Arrays([1l]
VTKArray ([60.76346588
dtype=float32)

85.87795258, ... 1,

Note that indexing is slightly different.

>>> print mbrtData[0:2]
[<vtk.numpy_interface.dataset_adapter.VIKNoneArray
object at 0x1191d40150>,
VTKArray ([60.76346588,
float32)]

85.87795258], dtype=

The return value is a composite array consisting of two
VTKArrays. The [] operator simply returned the first 2
values of each array. Since the first array in the collection
is a NoneArray, it returns a NoneArray. In general, all
indexing operations apply to each VTKArray in the composite
array collection. Same is true when indexing using mask (or
boolean) arrays:

print mbrtData[mbrtData < 50]
[<vtk.numpy_interface.dataset_adapter.VIKNoneArray
object at 0x1191d40150>,
VIKArray ([49.75050354, ...,
49.39894867, 43.34006882], dtype=float32)]

D. Differences with NumPy

So far, all of the functions from algorithms module that
we discussed are directly provided by NumPy. They all work
with single arrays and composite data arrays. algorithms
also provides some functions that behave somewhat differently
than their NumPy counterparts. These include cross, dot,
inverse, determinant, eigenvalue, eigenvector
etc. All of these functions are applied to each tuple rather than
to a whole array/matrix. For example:

>>> amatrix = algs.gradient (avector)
>>> algs.determinant (amatrix)
VTKArray ([-1221.2732624 , —-648.48272183,
-3.55133937, ..., 28.2577152 ,
-629.28507693, -1205.813701631)

E. Algorithms using connectivity

One of VTK’s biggest strengths is that its data model
supports a large variety of meshes and its algorithms work
generically on all of these mesh types. The algorithms
module exposes some of this functionality. Other functions
can be easily implemented by leveraging existing VTK filters.

>>> avector =
>>> amatrix =

algs.gradient (rtData)
algs.gradient (avector)

Functions like these require access to the dataset containing
the array and the associated mesh. This is one of the reasons
why we use a subclass of ndarray in dataset_adapter:

>>> rtData.DataSet
<vtk.numpy_interface.dataset_adapter.DataSet at 0
x11b61e9d0>

Each array points to the dataset containing it. Functions
such as gradient use the mesh and the array together. NumPy
provides a gradient function too. To understand the difference
between that and the one provided by algorithms, let’s
look at this example:

>>> algs.gradient (rtData2)

VTKArray ([[25.46767712, 8.78654003,
7.284773831,
[6.02292252, 8.99845123, 7.49668884],
[5.23528767, 9.80230141, 8.3005352 1,
[-6.43249083, -4.27642155, -8.300536161,
[-5.19838905, -3.47257614, -7.49668884],
[13.42047501, -3.26066017, -7.2847728711)

>>> rtData2.DataSet.GetClassName ()
"vtkUnstructuredGrid’

gradient and algorithms that require access to a mesh
work irrespective of whether that mesh is a uniform grid or a
curvilinear grid or an unstructured grid thanks to VTK’s data
model. NumPy’s gradient, on the other hand only works
with what VTK would refer as uniform rectilinear grids.

Under the covers, gradient indeed wuses the
vtkDataSetGradient filter. Since gradient mimics
NumPy ufuncs, one can combine it with other NumPy ufuncs,
or operators:

>>> algs.max (algs.gradient (rtData2) / 2.0)

F. Farallel data processing

For addressing large data processing needs on supercom-
puting environments, ParaView and VTK rely on distributed
data processing using MPI[7]. Data is distributed among MPI
ranks, with each rank processing part of the data. When we are
dealing with data distributed among ranks in such a fashion,
we often encounter cases where:

e ranks may not have any part of the data i.e. certain ranks
can have no datasets at all.

e ranks that have data may still have differences in the
number of elements as well as attribute arrays present.

e when dealing with composite datasets, these disparities
manifest themselves at block level as well i.e. certain
blocks may be present on certain ranks and not on others.

Now, if data on the local process is not complete, cer-
tain operations like min, max will yield different results on
different ranks! This is where the indirection of using ufunc
implementations in algorithms module comes in handy.
We can explicitly handle such operations that need special
reduction operations or communication among ranks here.

Fig. 1. Find Data dialog in ParaView used to find all points in the dataset
where the Temp is greater than or equal to 600 and Pres is less than the
mean Pres. Such queries and expressions can be easily evaluated by using
the VTK-NumPy integration layer described in Section III.

result on all

resudldt

>>> algs.max (rtData)

Produces same

The ufunc implementations in algorithms for min,
max, etc. are decorated versions of NumPy ufuncs with vari-
ations for handling parallel processing as well the composite
datasets and NoneArray.

IV. PYTHON-BASED DATA PROCESSING IN PARAVIEW

ParaView provides access to the Python-based data pro-
cessing in VTK (Section III through Programmable Source
and Programmable Filter. The algorithms available and API
is same as discussed earlier, the only difference being that the
wrapped data objects for inputs and output to the filter are
bound to scope variables inputs and output. Thus, you
do not need to call W

re

import numpy as

el
autostrip=True)

names=True, delimiter=’,’,

for name in data.dtype.names:
array = data[name]
output .RowData.append(array,

L

name)

we é ss ’c

taObject ().

Besides data processing, ParaView also uses this NumPy
interoperability for providing data querying interface. The
Find Data dialog allows users to enter Python expression that
evaluate to a mask array (Figure 1). The dialog then extracts
the masked elements from the dataset to present the selected
elements. This leverages the infrastructure explained so far

to ensure queries work appropriately in parallel, distributed
environments.

V. CONCLUSION

VTK and NumPy are both widely used in data processing
applications. This paper describes Python modules and API
recently added to VTK that makes it easier to transfer data
between the two frameworks. This enables interoperability by
making it possible for VTK algorithms to use NumPy utility
functions and vice-versa while preserving information about
the mesh topology, etc. provided by the VTK data model,
which is not easily represented as NumPy’s multidimensional
arrays. Our implementation also addresses the complications
with distributed data processing and composite datasets, com-
monly encountered in data analysis and visualization by VTK
and ParaView users.

REFERENCES

[1] W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit: An
Object Oriented Approach to 3D Graphics, 4th ed. Kitware Inc., 2004,
iSBN 1-930934-19-X.

[2]1 A. H. Squillacote, The ParaView Guide: A Parallel Visualization
Application. Kitware Inc., 2007, iSBN 1-930934-21-1. [Online].
Available: http://www.paraview.org

[3] Vislt User’s Manual, Lawrence Livermore National Laboratory, October
2005, technical Report UCRL-SM-220449.

[4] P. Ramachandran, “MayaVi: A free tool for CFD data visualization,” in
4th Annual CFD Symposium, August 2001.

[5] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001-, [Online; accessed 2014-09-04]. [Online].
Available: http://www.scipy.org/

[6] S. v.d. Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array: A
Structure for Efficient Numerical Computation,” Computing in Science
and Engineering, vol. 13, no. 2, pp. 22-30, 2011.

[71 M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI —
The Complete Reference: Volume 1, The MPI Core, 2nd ed. MIT Press,
1999, iSBN 0-262-69215-5.

