
A Technical Anatomy of How OpenMPI Applications
Can Inherit Fault Tolerance Using SPM.Python

Minesh B. Amin
mamin @ mbasciences.com

http://www.mbasciences.com

PyHPC Workshop

Supercomputing Conference 2011

Seattle, Washington

Nov 18, 2011

© 2011 MBA Sciences, Inc. All rights reserved.

http://www.mbasciences.com

Prologue

GNU/Linux [] mpirun/hello_world -prefix "api"

Typical OpenMPI application ... lacks support for:

• fault tolerance
• timeout
• detection of deadlocks

Prologue

GNU/Linux [] mpirun/hello_world -prefix "api"

Typical OpenMPI application ...

Prologue

GNU/Linux [] mpirun/hello_world -prefix "api"

Typical OpenMPI application ... that lacks support for:

Prologue

GNU/Linux [] mpirun/hello_world -prefix "api"

Typical OpenMPI application ... that lacks support for:

• fault tolerance

• timeout
• detection of deadlocks

⇒ Prototyping is (deeply)
∞

frustrating

Prologue

GNU/Linux [] mpirun/hello_world -prefix "api"

Typical OpenMPI application ... that lacks support for:

• fault tolerance
• timeout

• detection of deadlocks

⇒ Prototyping is (deeply)
∞

frustrating

Prologue

GNU/Linux [] mpirun/hello_world -prefix "api"

Typical OpenMPI application ... that lacks support for:

• fault tolerance
• timeout
• detection of deadlocks

⇒ Prototyping is (deeply)
∞

frustrating

Prologue

GNU/Linux [] mpirun/hello_world -prefix "api"

Typical OpenMPI application ... that lacks support for:

• fault tolerance
• timeout
• detection of deadlocks

⇒ Prototyping is (deeply)
∞

frustrating

Problem Statement

Prototyping should be frictionless

Must use original OpenMPI application
• original source code
• original binary

Original OpenMPI application must inherit support for:
• fault tolerance
• timeout
• detecting deadlocks

GNU/Linux [] spm.python ...
mpirun/hello_world -prefix "api"

Problem Statement

Prototyping should be frictionless

Must use original OpenMPI application
• original source code
• original binary

Original OpenMPI application must inherit support for:
• fault tolerance
• timeout
• detecting deadlocks

GNU/Linux [] spm.python ...
mpirun/hello_world -prefix "api"

Problem Statement

Prototyping should be frictionless

Must use original OpenMPI application
• original source code
• original binary

Original OpenMPI application must inherit support for:
• fault tolerance
• timeout
• detecting deadlocks

GNU/Linux [] spm.python ...
mpirun/hello_world -prefix "api"

Problem Statement

Prototyping should be frictionless

Must use original OpenMPI application
• original source code
• original binary

Original OpenMPI application must inherit support for:
• fault tolerance
• timeout
• detecting deadlocks

GNU/Linux [] spm.python ...
mpirun/hello_world -prefix "api"

Problem Statement (Cont’d)

GNU/Linux [] spm.python ...
mpirun/hello_world -prefix "api"

AB

Exploiting two very different forms of parallelism:
• Using same resources
• At the same time

Drop-in
replacement for

mpirun

Multiple sessions of
mpirun

within a single session of
of spm.python

Can use same resources for:
• Checkpoint based parallelism
• What-if analysis
• Stress testing

Problem Statement (Cont’d)

GNU/Linux [] spm.python ...
mpirun/hello_world -prefix "api"

AB

Exploiting two very different forms of parallelism:
• Using same resources
• At the same time

Drop-in
replacement for

mpirun

Multiple sessions of
mpirun

within a single session of
of spm.python

Can use same resources for:
• Checkpoint based parallelism
• What-if analysis
• Stress testing

Problem Statement (Cont’d)

GNU/Linux [] spm.python ...
mpirun/hello_world -prefix "api"

AB

Exploiting two very different forms of parallelism:
• Using same resources
• At the same time

Drop-in
replacement for

mpirun

Multiple sessions of
mpirun

within a single session of
of spm.python

Can use same resources for:
• Checkpoint based parallelism
• What-if analysis
• Stress testing

Problem Statement (Cont’d)

GNU/Linux [] spm.python ...
mpirun/hello_world -prefix "api"

AB

Exploiting two very different forms of parallelism:
• Using same resources
• At the same time

Drop-in
replacement for

mpirun

Multiple sessions of
mpirun

within a single session of
of spm.python

Can use same resources for:
• Checkpoint based parallelism
• What-if analysis
• Stress testing

Problem Statement (Cont’d)

GNU/Linux [] spm.python ...
mpirun/hello_world -prefix "api"

AB

Exploiting two very different forms of parallelism:
• Using same resources
• At the same time

Drop-in
replacement for

mpirun

Multiple sessions of
mpirun

within a single session of
of spm.python

Can use same resources for:
• Checkpoint based parallelism
• What-if analysis
• Stress testing

Problem Statement (Cont’d)

GNU/Linux [] spm.python ...
mpirun/hello_world -prefix "api"

AB

Exploiting two very different forms of parallelism:
• Using same resources
• At the same time

Drop-in
replacement for

mpirun

Multiple sessions of
mpirun

within a single session of
of spm.python

Can use same resources for:
• Checkpoint based parallelism
• What-if analysis
• Stress testing

Problem Statement (Cont’d)

GNU/Linux [] spm.python ...
mpirun/hello_world -prefix "api"

AB

Exploiting two very different forms of parallelism:
• Using same resources
• At the same time

Drop-in
replacement for

mpirun

Multiple sessions of
mpirun

within a single session of
of spm.python

Can use same resources for:
• Checkpoint based parallelism
• What-if analysis
• Stress testing

Terminology: "Exploiting Parallelism"

Exploiting parallelism entails the management of a collection of
serial tasks which may communicate using only compatible

communication primitives

management refers to policies by which:

• tasks are scheduled,
• premature terminations are handled,
• preemptive support is provided,
• communication primitives are enabled/disabled, and
• the manner in which resources are obtained and released

serial tasks are classified in terms of either:

• Coarse grain ...
where tasks may not communicate prior to conclusion, or

• Fine grain ...
where tasks may communicate prior to conclusion.

Management policies codify how serial tasks are
to be managed ... independent of what they may be

Terminology: "Exploiting Parallelism"

Exploiting parallelism entails the management of a collection of
serial tasks which may communicate using only compatible

communication primitives

management refers to policies by which:

• tasks are scheduled,
• premature terminations are handled,
• preemptive support is provided,
• communication primitives are enabled/disabled, and
• the manner in which resources are obtained and released

serial tasks are classified in terms of either:

• Coarse grain ...
where tasks may not communicate prior to conclusion, or

• Fine grain ...
where tasks may communicate prior to conclusion.

Management policies codify how serial tasks are
to be managed ... independent of what they may be

Terminology: "Exploiting Parallelism"

Exploiting parallelism entails the management of a collection of
serial tasks which may communicate using only compatible

communication primitives

management refers to policies by which:
• tasks are scheduled,

• premature terminations are handled,
• preemptive support is provided,
• communication primitives are enabled/disabled, and
• the manner in which resources are obtained and released

serial tasks are classified in terms of either:

• Coarse grain ...
where tasks may not communicate prior to conclusion, or

• Fine grain ...
where tasks may communicate prior to conclusion.

Management policies codify how serial tasks are
to be managed ... independent of what they may be

Terminology: "Exploiting Parallelism"

Exploiting parallelism entails the management of a collection of
serial tasks which may communicate using only compatible

communication primitives

management refers to policies by which:
• tasks are scheduled,
• premature terminations are handled,

• preemptive support is provided,
• communication primitives are enabled/disabled, and
• the manner in which resources are obtained and released

serial tasks are classified in terms of either:

• Coarse grain ...
where tasks may not communicate prior to conclusion, or

• Fine grain ...
where tasks may communicate prior to conclusion.

Management policies codify how serial tasks are
to be managed ... independent of what they may be

Terminology: "Exploiting Parallelism"

Exploiting parallelism entails the management of a collection of
serial tasks which may communicate using only compatible

communication primitives

management refers to policies by which:
• tasks are scheduled,
• premature terminations are handled,
• preemptive support is provided,

• communication primitives are enabled/disabled, and
• the manner in which resources are obtained and released

serial tasks are classified in terms of either:

• Coarse grain ...
where tasks may not communicate prior to conclusion, or

• Fine grain ...
where tasks may communicate prior to conclusion.

Management policies codify how serial tasks are
to be managed ... independent of what they may be

Terminology: "Exploiting Parallelism"

Exploiting parallelism entails the management of a collection of
serial tasks which may communicate using only compatible

communication primitives

management refers to policies by which:
• tasks are scheduled,
• premature terminations are handled,
• preemptive support is provided,
• communication primitives are enabled/disabled, and

• the manner in which resources are obtained and released

serial tasks are classified in terms of either:

• Coarse grain ...
where tasks may not communicate prior to conclusion, or

• Fine grain ...
where tasks may communicate prior to conclusion.

Management policies codify how serial tasks are
to be managed ... independent of what they may be

Terminology: "Exploiting Parallelism"

Exploiting parallelism entails the management of a collection of
serial tasks which may communicate using only compatible

communication primitives

management refers to policies by which:
• tasks are scheduled,
• premature terminations are handled,
• preemptive support is provided,
• communication primitives are enabled/disabled, and
• the manner in which resources are obtained and released

serial tasks are classified in terms of either:

• Coarse grain ...
where tasks may not communicate prior to conclusion, or

• Fine grain ...
where tasks may communicate prior to conclusion.

Management policies codify how serial tasks are
to be managed ... independent of what they may be

Terminology: "Exploiting Parallelism"

Exploiting parallelism entails the management of a collection of
serial tasks which may communicate using only compatible

communication primitives

management refers to policies by which:
• tasks are scheduled,
• premature terminations are handled,
• preemptive support is provided,
• communication primitives are enabled/disabled, and
• the manner in which resources are obtained and released

serial tasks are classified in terms of either:

• Coarse grain ...
where tasks may not communicate prior to conclusion, or

• Fine grain ...
where tasks may communicate prior to conclusion.

Management policies codify how serial tasks are
to be managed ... independent of what they may be

Terminology: "Exploiting Parallelism"

Exploiting parallelism entails the management of a collection of
serial tasks which may communicate using only compatible

communication primitives

management refers to policies by which:
• tasks are scheduled,
• premature terminations are handled,
• preemptive support is provided,
• communication primitives are enabled/disabled, and
• the manner in which resources are obtained and released

serial tasks are classified in terms of either:
• Coarse grain ...

where tasks may not communicate prior to conclusion, or

• Fine grain ...
where tasks may communicate prior to conclusion.

Management policies codify how serial tasks are
to be managed ... independent of what they may be

Terminology: "Exploiting Parallelism"

Exploiting parallelism entails the management of a collection of
serial tasks which may communicate using only compatible

communication primitives

management refers to policies by which:
• tasks are scheduled,
• premature terminations are handled,
• preemptive support is provided,
• communication primitives are enabled/disabled, and
• the manner in which resources are obtained and released

serial tasks are classified in terms of either:
• Coarse grain ...

where tasks may not communicate prior to conclusion, or
• Fine grain ...

where tasks may communicate prior to conclusion.

Management policies codify how serial tasks are
to be managed ... independent of what they may be

Terminology: "Exploiting Parallelism"

Exploiting parallelism entails the management of a collection of
serial tasks which may communicate using only compatible

communication primitives

management refers to policies by which:
• tasks are scheduled,
• premature terminations are handled,
• preemptive support is provided,
• communication primitives are enabled/disabled, and
• the manner in which resources are obtained and released

serial tasks are classified in terms of either:
• Coarse grain ...

where tasks may not communicate prior to conclusion, or
• Fine grain ...

where tasks may communicate prior to conclusion.

Management policies codify how serial tasks are
to be managed ... independent of what they may be

Terminology: "Parallel Enabling Technologies"

Means to the end

• Bottom-up

OpenMPI OpenMP
CUDA OpenGL

• Maximum flexibility
• Maximum headaches
• Must implement fault tolerance

• Top-down
Hadoop Goldenorb
GraphLab

• Limited flexibility
• Fewer headaches
• Fault tolerance is inherited

• Self-contained environment

SPM.Python
• Maximum flexibility
• Fewest headaches
• Fault tolerance is inherited

N environments/installations for N Frameworks

One environment/installation, N suites of Pclosures
>>> createVirtualCloud -async

>>> cmdA >>> cmdA -parallel
>>> cmdB >>> cmdB -parallel
>>> cmdC >>> cmdC -parallel
>>> cmdD >>> cmdD -parallel

Terminology: "Parallel Enabling Technologies"

Means to the end

• Bottom-up

OpenMPI OpenMP
CUDA OpenGL

• Maximum flexibility
• Maximum headaches
• Must implement fault tolerance

• Top-down
Hadoop Goldenorb
GraphLab

• Limited flexibility
• Fewer headaches
• Fault tolerance is inherited

• Self-contained environment

SPM.Python
• Maximum flexibility
• Fewest headaches
• Fault tolerance is inherited

N environments/installations for N Frameworks

One environment/installation, N suites of Pclosures
>>> createVirtualCloud -async

>>> cmdA >>> cmdA -parallel
>>> cmdB >>> cmdB -parallel
>>> cmdC >>> cmdC -parallel
>>> cmdD >>> cmdD -parallel

Terminology: "Parallel Enabling Technologies"

Means to the end

• Bottom-up

OpenMPI OpenMP
CUDA OpenGL

• Maximum flexibility
• Maximum headaches
• Must implement fault tolerance

• Top-down
Hadoop Goldenorb
GraphLab

• Limited flexibility
• Fewer headaches
• Fault tolerance is inherited

• Self-contained environment

SPM.Python
• Maximum flexibility
• Fewest headaches
• Fault tolerance is inherited

N environments/installations for N Frameworks

One environment/installation, N suites of Pclosures
>>> createVirtualCloud -async

>>> cmdA >>> cmdA -parallel
>>> cmdB >>> cmdB -parallel
>>> cmdC >>> cmdC -parallel
>>> cmdD >>> cmdD -parallel

Terminology: "Parallel Enabling Technologies"

Means to the end

• Bottom-up

OpenMPI OpenMP
CUDA OpenGL

• Maximum flexibility
• Maximum headaches
• Must implement fault tolerance

• Top-down
Hadoop Goldenorb
GraphLab

• Limited flexibility
• Fewer headaches
• Fault tolerance is inherited

• Self-contained environment

SPM.Python
• Maximum flexibility
• Fewest headaches
• Fault tolerance is inherited

N environments/installations for N Frameworks

One environment/installation, N suites of Pclosures>>> createVirtualCloud -async
>>> cmdA >>> cmdA -parallel
>>> cmdB >>> cmdB -parallel
>>> cmdC >>> cmdC -parallel
>>> cmdD >>> cmdD -parallel

Terminology: "Parallel Enabling Technologies"

Means to the end

• Bottom-up

OpenMPI OpenMP
CUDA OpenGL

• Maximum flexibility
• Maximum headaches
• Must implement fault tolerance

• Top-down
Hadoop Goldenorb
GraphLab

• Limited flexibility
• Fewer headaches
• Fault tolerance is inherited

• Self-contained environment

SPM.Python
• Maximum flexibility
• Fewest headaches
• Fault tolerance is inherited

N environments/installations for N Frameworks

One environment/installation, N suites of Pclosures
>>> createVirtualCloud -async

>>> cmdA >>> cmdA -parallel
>>> cmdB >>> cmdB -parallel
>>> cmdC >>> cmdC -parallel
>>> cmdD >>> cmdD -parallel

Terminology: "Parallel Enabling Technologies"

Means to the end

• Bottom-up

OpenMPI OpenMP
CUDA OpenGL

• Maximum flexibility
• Maximum headaches
• Must implement fault tolerance

• Top-down
Hadoop Goldenorb
GraphLab

• Limited flexibility
• Fewer headaches
• Fault tolerance is inherited

• Self-contained environment

SPM.Python
• Maximum flexibility
• Fewest headaches
• Fault tolerance is inherited

N environments/installations for N Frameworks

One environment/installation, N suites of Pclosures

>>> createVirtualCloud -async
>>> cmdA >>> cmdA -parallel
>>> cmdB >>> cmdB -parallel
>>> cmdC >>> cmdC -parallel
>>> cmdD >>> cmdD -parallel

Terminology: "Parallel Enabling Technologies"

Means to the end

• Bottom-up

OpenMPI OpenMP
CUDA OpenGL

• Maximum flexibility
• Maximum headaches
• Must implement fault tolerance

• Top-down
Hadoop Goldenorb
GraphLab

• Limited flexibility
• Fewer headaches
• Fault tolerance is inherited

• Self-contained environment

SPM.Python
• Maximum flexibility
• Fewest headaches
• Fault tolerance is inherited

N environments/installations for N Frameworks

One environment/installation, N suites of Pclosures
>>> createVirtualCloud -async

>>> cmdA >>> cmdA -parallel
>>> cmdB >>> cmdB -parallel
>>> cmdC >>> cmdC -parallel
>>> cmdD >>> cmdD -parallel

Anatomy: Timeline

GNU/Linux [] spm.python ...
mpirun ./hello_world -prefix "api"

Anatomy: Timeline (Cont’d)

Hub mpirun Spoke orted wrapper Application

exit();

exit();
exit();

exit();

1

2 3
4

5

67

Launch:
• mpirun

Monitor:
• mpirun
• Spokes

Launch:
• orted

Monitor:
• orted
• wrapper

Launch:
• Application

Monitor/Timeout:
• Application

Normal
Execution

Anatomy: Timeline (Cont’d)

Hub mpirun Spoke orted wrapper Application

exit();

exit();
exit();

exit();

1

2 3
4

5

67

Launch:
• mpirun

Monitor:
• mpirun
• Spokes

Launch:
• orted

Monitor:
• orted
• wrapper

Launch:
• Application

Monitor/Timeout:
• Application

Normal
Execution

Anatomy: Timeline (Cont’d)

Hub mpirun Spoke orted wrapper Application

exit();

exit();
exit();

exit();

1

2 3
4

5

67

Launch:
• mpirun

Monitor:
• mpirun
• Spokes

Launch:
• orted

Monitor:
• orted
• wrapper

Launch:
• Application

Monitor/Timeout:
• Application

Normal
Execution

Anatomy: Timeline (Cont’d)

Hub mpirun Spoke orted wrapper Application

exit();

exit();
exit();

exit();

1

2 3
4

5

67

Launch:
• mpirun

Monitor:
• mpirun
• Spokes

Launch:
• orted

Monitor:
• orted
• wrapper

Launch:
• Application

Monitor/Timeout:
• Application

Normal
Execution

Anatomy: Timeline (Cont’d)

Hub mpirun Spoke orted wrapper Application

exit();

exit();
exit();

exit();

1

2 3
4

5

67

Launch:
• mpirun

Monitor:
• mpirun
• Spokes

Launch:
• orted

Monitor:
• orted
• wrapper

Launch:
• Application

Monitor/Timeout:
• Application

Normal
Execution

Anatomy: Timeline (Cont’d)

Hub mpirun Spoke orted wrapper Application

exit();

exit();
exit();

exit();

1

2 3
4

5

67

Launch:
• mpirun

Monitor:
• mpirun
• Spokes

Launch:
• orted

Monitor:
• orted
• wrapper

Launch:
• Application

Monitor/Timeout:
• Application

Normal
Execution

Anatomy: Timeline (Cont’d)

Hub mpirun Spoke orted wrapper Application

exit();

exit();
exit();

exit();

1

2 3
4

5

67

Launch:
• mpirun

Monitor:
• mpirun
• Spokes

Launch:
• orted

Monitor:
• orted
• wrapper

Launch:
• Application

Monitor/Timeout:
• Application

Normal
Execution

Anatomy: Timeline (Cont’d)

Hub mpirun Spoke orted wrapper Application

exit();

exit();
exit();

exit();

1

2 3
4

5

67

Launch:
• mpirun

Monitor:
• mpirun
• Spokes

Launch:
• orted

Monitor:
• orted
• wrapper

Launch:
• Application

Monitor/Timeout:
• Application

Normal
Execution

Anatomy: Timeline (Cont’d)

Hub mpirun Spoke orted wrapper Application

exit();

exit();
exit();

exit();

1

2 3
4

5

67

Launch:
• mpirun

Monitor:
• mpirun
• Spokes

Launch:
• orted

Monitor:
• orted
• wrapper

Launch:
• Application

Monitor/Timeout:
• Application

Normal
Execution

Anatomy: Breakdown

Hub mpirun Spoke orted wrapper Application

exit();

exit();
exit();

exit();

1

2 3
4

5

67

Launch:
• mpirun

Monitor:
• mpirun
• Spokes

Launch:
• orted

Monitor:
• orted
• wrapper

Launch:
• Application

Monitor/Timeout:
• Application

Normal
Execution

Anatomy: Breakdown

Hub mpirun Spoke orted wrapper Application

exit();

exit();
exit();

exit();

1

2 3
4

5

67

Launch:
• mpirun

Monitor:
• mpirun
• Spokes

Launch:
• orted

Monitor:
• orted
• wrapper

Launch:
• Application

Monitor/Timeout:
• Application

Normal
Execution

Built-in Package Management System
• Selectively change default OpenMPI env

Built-in Package Management System

>>> sys.path = [".", "/-@-/pkg.builtin", "/opt/default"]
>>> import pycuda

Hub

Spoke

Spoke

Spoke

3.0 3.1 3.2

3.0 3.1 3.2

3.0 3.1 3.2

3.0 3.1 3.2 ⇒ Uncatchable exception

Built-in Package Management System

>>> sys.path = [".", "/-@-/pkg.builtin", "/opt/default"]
>>> import pycuda

Hub

Spoke

Spoke

Spoke

3.0 3.1 3.2

3.0 3.1 3.2

3.0 3.1 3.2

3.0 3.1 3.2 ⇒ Uncatchable exception

Built-in Package Management System

>>> sys.path = [".", "/-@-/pkg.builtin", "/opt/default"]
>>> import pycuda

Hub

Spoke

Spoke

Spoke

3.0 3.1 3.2

3.0 3.1 3.2

3.0 3.1 3.2

3.0 3.1 3.2 ⇒ Uncatchable exception

Built-in Package Management System

>>> sys.path = [".", "/-@-/pkg.builtin", "/opt/default"]
>>> import pycuda

Hub

Spoke

Spoke

Spoke

3.0 3.1 3.2

3.0 3.1 3.2

3.0 3.1 3.2

3.0 3.1 3.2 ⇒ Uncatchable exception

Built-in Package Management System

>>> sys.path = [".", "/-@-/pkg.builtin", "/opt/default"]
>>> import pycuda

Hub

Spoke

Spoke

Spoke

3.0 3.1 3.2

3.0 3.1 3.2

3.0 3.1 3.2

3.0 3.1 3.2 ⇒ Uncatchable exception

Built-in Package Management System

>>> sys.path = [".", "/-@-/pkg.builtin", "/opt/default"]
>>> import pycuda

Hub

Spoke

Spoke

Spoke

3.0 3.1 3.2

3.0 3.1 3.2

3.0 3.1 3.2

3.0 3.1 3.2 ⇒ Uncatchable exception

Built-in Package Management System

>>> sys.path = [".", "/-@-/pkg.builtin", "/opt/default"]
>>> import pycuda

Hub

Spoke

Spoke

Spoke

3.0 3.1 3.2

3.0 3.1 3.2

3.0 3.1 3.2

3.0 3.1 3.2 ⇒ Uncatchable exception

Built-in Package Management System

>>> sys.path = [".", "/-@-/pkg.builtin", "/opt/default"]
>>> import pycuda

Hub

Spoke

Spoke

Spoke

3.0 3.1 3.2

3.0 3.1 3.2

3.0 3.1 3.2

3.0 3.1 3.2 ⇒ Uncatchable exception

Anatomy: Breakdown

Hub mpirun Spoke orted wrapper Application

exit();

exit();
exit();

exit();

1

2 3
4

5

67

Launch:
• mpirun

Monitor:
• mpirun
• Spokes

Launch:
• orted

Monitor:
• orted
• wrapper

Launch:
• Application

Monitor/Timeout:
• Application

Normal
Execution

Built-in Package Management System
• Selectively change default OpenMPI env

Redirection of library calls
• Augment libmpi.so, libc.so ...

with libSPM.so

Redirecting Shared Library Calls

signal(...);

exit(...);

MPI_Init(...)
;

MPI_Init_thread(...);

OpenMPI Application

libSPM.so

SPMMPI_Init(...) {
...
return MPI_Init(...);

}

SPMMPI_Init(...) {
...
return MPI_Init(...);

}

SPMMPI_Init(...) {
...
return MPI_Init(...);

}

libmpi.so

MPI_Init(...) {
...

}

MPI_Init(...) {
...

}

libc.so

exit(...) {
...

}

exit(...) {
...

}

Redirecting Shared Library Calls

signal(...);

exit(...);

MPI_Init(...)
;

MPI_Init_thread(...);

OpenMPI Application

libSPM.so

SPMMPI_Init(...) {
...
return MPI_Init(...);

}

SPMMPI_Init(...) {
...
return MPI_Init(...);

}

SPMMPI_Init(...) {
...
return MPI_Init(...);

}

libmpi.so

MPI_Init(...) {
...

}

MPI_Init(...) {
...

}

libc.so

exit(...) {
...

}

exit(...) {
...

}

Redirecting Shared Library Calls

signal(...);

exit(...);

MPI_Init(...)
;

MPI_Init_thread(...);

OpenMPI Application

libSPM.so

SPMMPI_Init(...) {
...
return MPI_Init(...);

}

SPMMPI_Init(...) {
...
return MPI_Init(...);

}

SPMMPI_Init(...) {
...
return MPI_Init(...);

}

libmpi.so

MPI_Init(...) {
...

}

MPI_Init(...) {
...

}

libc.so

exit(...) {
...

}

exit(...) {
...

}

Anatomy: Breakdown

Hub mpirun Spoke orted wrapper Application

exit();

exit();
exit();

exit();

1

2 3
4

5

67

Launch:
• mpirun

Monitor:
• mpirun
• Spokes

Launch:
• orted

Monitor:
• orted
• wrapper

Launch:
• Application

Monitor/Timeout:
• Application

Normal
Execution

Built-in Package Management System
• Selectively change default OpenMPI env

Redirection of library calls
• Augment libmpi.so, libc.so ...

with libSPM.so

Second Parallel Capability
• ∼ 60-line python script
• Authored by developer

Second Parallel Capability

@spm.util.dassert(predicateCb = spm.sys.sstat.amOffline)
@spm.util.dassert(predicateCb = spm.sys.pstat.amHub)
def __init():
return spm.pclosure.macro.papply.template.openMPI.\

policyA.defun(signature = ’signature::Hub’,
stage1Cb = __taskStat,
);

__pc = __init();

Declaration + Definition of Pclosure

Second Parallel Capability

@spm.util.dassert(predicateCb = spm.sys.sstat.amOffline)
@spm.util.dassert(predicateCb = spm.sys.pstat.amHub)
def main(pool,

taskApiArgs,
taskTimeout):

Initialize ’stage0’.
__pc.stage0.init.main(typedef = ...);
hdl = __pc.stage0.payload.tie();
Populate the template task
hdl.spm.meta.label = ’***’; # Not interested.
hdl.spm.meta.apiArgs = taskApiArgs;
hdl.spm.meta.timeout = taskTimeout;
Invoke the pmanager
__pc.stage0.event.manage(pool = pool,

nSpokesMin = ...
nSpokesMax = ...
timeoutWaitForSpokes = ...
timeoutExecution = ...
);

return;

Population + Invocation of Pclosure

Second Parallel Capability

r"""
task<template> ::struct {
SPM component ...
spm ::struct {

meta ::struct {
label ::scalar<stringSnippet> = deferred;
apiArgs ::dict<string,mixed> = deferred;
timeout ::scalar<timeout> = deferred;

};

core ::struct {
relaunchPre ::scalar<bool> = None;
relaunchPost ::scalar<bool> = None;
nameHost ::scalar<auto> = None;
whoAmI ::scalar<auto> = None;

};

stat ::struct {
exception ::scalar<auto> = None;
returnValue ::scalar<record> = None;

};
};
non-SPM component ...

};
"""

Typedef for Template Task

Second Parallel Capability

@spm.util.dassert(predicateCb = spm.sys.sstat.amOnline)
@spm.util.dassert(predicateCb = spm.sys.pstat.amHub)
def __taskStat(pc):
try:
hdl = pc.stage1.payload.tie();
returnValue = hdl.spm.stat.returnValue;
if (returnValue.Has(attr = ’stdOut’)):

print("\tstdOut : %s", returnValue.stdOut);
if (returnValue.Has(attr = ’stdErr’)):

print("\tstdErr : %s", returnValue.stdErr);
if (returnValue.Has(attr = ’stdOutErr’)):

print("\tstdOutErr: %s", returnValue.stdOutErr);
except (SPMTaskDropped,

SPMTaskLoad,
SPMTaskEval,
), (hdl,):

pass;

return (pc.stage1.event.done(),
None,
)[-1];

Callback for Status Reports

SPM.Python Session

l GNU/Linux [] spm.3.111116.trial.A.python
(Trial Edition)

Spm.Python 3.111116 / Python 2.4.6
[GCC 4.4.3 (64 bit) on linux2]

NOTE
>>>> Trial period ends at <<<<
>>>> 24:00 hrs (Pacific Standard Time) <<<<
>>>> December 29, 2011 <<<<

Type "help", "copyright", "credits", "license" or "spm.Api()" for more information.
Type "spm.DemoExtract(dirname = ...)" to extract demo scripts.

Please visit www.mbasciences.com for the latest and growing
collection of scripts and technical briefs classified in terms of

parallel management patterns.

l >>> import pool
l >>> import demo
l >>> import os;
l >>> taskApiArgs = \
l dict(app = os.getcwd() + ’/hello_world’,
l appOptions = "-prefix=’app’",
l);
l >>> taskTimeout = spm.util.timeout.after(seconds = 10);
3 >>> demo.main(pool = pool.intraAll(),
l taskApiArgs = taskApiArgs,
l taskTimeout = taskTimeout)
l #: MetaStatus (hub): Waiting - ForSpokes ...
l #: MetaStatus (hub): Tasks - Eval
l app => 0
l app => 1
l #: MetaStatus (hub): Tasks - EvalDone
3 >>> demo.main(pool = pool.intraOnePerServer(),
l taskApiArgs = taskApiArgs,
l taskTimeout = taskTimeout)
l #: MetaStatus (hub): Waiting - ForSpokes ...
l #: MetaStatus (hub): Tasks - Eval
l #: MetaStatus (hub): Tasks - EvalDone
l >>> exit()
l GNU/Linux []

Conclusion

Prototyping should be frictionless

Must use original OpenMPI application
• original source code
• original binary

Original OpenMPI application must inherit support for:
• fault tolerance
• timeout
• detecting deadlocks

GNU/Linux [] spm.python ...
mpirun/hello_world -prefix "api"

Conclusion (Cont’d)

http://www.mbasciences.com
SPM.Python distribution

Technical Briefs

Parallel Management Patterns



Clone
Once
Repeat

Partition
DAG
List

PartitionAggregate
Centralized
Decentralized

Elementary
Parallel Primitives

Partition
Grid/OpenMPI

Limited Beta
Nov 30

;

HPC
Parallel Primitives

Partition
Data Flow
Graph

Stanford U
Dec 6

;

Data / Graph
Parallel Primitives

http://www.mbasciences.com

