A Technical Anatomy of How OpenMPI Applications
Can Inherit Fault Tolerance Using SPM.Python

Minesh B. Amin
mamin @ mbasciences.com
http://www.mbasciences.com

PyHPC Workshop
Supercomputing Conference 2011
Seattle, Washington
Nov 18, 2011

http://www.mbasciences.com

GNU/Linux [] mpirun/hello_world -prefix "api"

Prologue

mpirun/hello_world -prefix "api"

/\/

Typical OpenMPI application ...

Prologue

mpirun/hello_world -prefix "api"

/\/

Typical OpenMPI application ... that lacks support for:

Prologue

mpirun/hello_world -prefix "api"

Typical OpenMPI application ... that lacks support for:

e fault tolerance

Prologue

mpirun/hello_world -prefix "api"

Typical OpenMPI application ... that lacks support for:

e fault tolerance
e timeout

Prologue

mpirun/hello_world -prefix "api"

Typical OpenMPI application ... that lacks support for:

e fault tolerance
e timeout
e detection of deadlocks

Prologue

mpirun/hello_world -prefix "api"

Typical OpenMPI application ... that lacks support for:

e fault tolerance
e timeout
e detection of deadlocks

= Prototyping is (deeply\oo frustrating

Problem Statement

Prototyping should e frictionless

Problem Statement

Prototyping should e frictionless

Must use original OpenMPI application
® original source code
® original binary

Problem Statement

Prototyping should e frictionless

Must use original OpenMPI application
® original source code
® original binary

v

Original OpenMPI application must inherit support for:
¢ fault tolerance
¢ timeout
® detecting deadlocks

Problem Statement

Prototyping should e frictionless

Must use original OpenMPI application
® original source code
® original binary

v

Original OpenMPI application must inherit support for:
¢ fault tolerance
¢ timeout
® detecting deadlocks

spm.python ..

mpiMn /hello_world -prefix "api"

Problem Statement (Cont'd)

spm.python ...
mpixn ...

./hello_world -prefix "api"

Problem Statement (Cont'd)

spm.python ...

mpibé\n ./hello_world -prefix "api"

Problem Statement (Cont'd)

spm.python ... /hello_world -prefix "api"

émpqn o

Problem Statement (Cont'd)

spm.python ... J/hello_world -prefix "api"

@lmn o

Exploiting two very different forms of parallelism:
® Using same resources
¢ At the same time

Problem Statement (Cont'd)

spm.python ...

émpqn
v

Drop-in
replacement for
mpirun

./hello_world -prefix "api"

Problem Statement (Cont'd)

spm.python ... /hello_world -prefix "api"

Drop-in Multiple sessions of

replacement for
mpirun

mpirun
within a single session of
of spm.python

Problem Statement (Cont'd)

spm.p_yth(?n " ./hello_world -prefix "api"

Multiple sessions of
mpirun
within a single session of
of spm.python

Can use same resources for:

e Checkpoint based parallelism
e What-if analysis

e Stress testing

Drop-in
replacement for
mpirun

Terminology: "Exploiting Parallelism"

Exploiting parallelism entails the manaaement of a collection of
serial tasks which may communicate using only compatirle
communication primitives

Terminology: "Exploiting Parallelism"

Exploiting parallelism entails the manaaement of a collection of
serial tasks which may communicate using only compatirle
communication primitives

manacementt refers to policies by which:

Terminology: "Exploiting Parallelism"

Exploiting parallelism entails the manaaement of a collection of
serial tasks which may communicate using only compatirle
communication primitives

manacementt refers to policies by which:
e tasks are scheduled,

Terminology: "Exploiting Parallelism"

Exploiting parallelism entails the manaaement of a collection of
serial tasks which may communicate using only compatirle
communication primitives

manacementt refers to policies by which:

e tasks are scheduled,
e premature terminations are handled,

Terminology: "Exploiting Parallelism"

Exploiting parallelism entails the manaaement of a collection of
serial tasks which may communicate using only compatirle
communication primitives

manacementt refers to policies by which:
e tasks are scheduled,
e premature terminations are handled,
e preemptive support is provided,

Terminology: "Exploiting Parallelism"

Exploiting parallelism entails the manaaement of a collection of
serial tasks which may communicate using only compatirle
communication primitives

manacementt refers to policies by which:

tasks are scheduled,

premature terminations are handled,

preemptive support is provided,

communication primitives are enabled/disabled, and

Terminology: "Exploiting Parallelism"

Exploiting parallelism entails the manaaement of a collection of
serial tasks which may communicate using only compatirle
communication primitives

manaaementt refers to policies by which:

tasks are scheduled,

premature terminations are handled,

preemptive support is provided,

communication primitives are enabled/disabled, and

the manner in which resources are obtained and released

Terminology: "Exploiting Parallelism"

Exploiting parallelism entails the manaaement of a collection of
serial tasks which may communicate using only compatirle
communication primitives

manaaementt refers to policies by which:

tasks are scheduled,

premature terminations are handled,

preemptive support is provided,

communication primitives are enabled/disabled, and

the manner in which resources are obtained and released

serial tasks are classified in terms of either:

Terminology: "Exploiting Parallelism"

Exploiting parallelism entails the manaaement of a collection of
serial tasks which may communicate using only compatirle
communication primitives

manaaementt refers to policies by which:

tasks are scheduled,

premature terminations are handled,

preemptive support is provided,

communication primitives are enabled/disabled, and

the manner in which resources are obtained and released

serial tasks are classified in terms of either:

e Coarse arain ...
where tasks may not communicate prior to conclusion, or

Terminology: "Exploiting Parallelism"

Exploiting parallelism entails the manaaement of a collection of
serial tasks which may communicate using only compatirle
communication primitives

manaaementt refers to policies by which:

tasks are scheduled,

premature terminations are handled,

preemptive support is provided,

communication primitives are enabled/disabled, and

the manner in which resources are obtained and released

serial tasks are classified in terms of either:

e Coarse arain ...

where tasks may not communicate prior to conclusion, or
e Fine arain ...

where tasks may communicate prior to conclusion.

Terminology: "Exploiting Parallelism"

Exploiting parallelism entails the manaaement of a collection of
serial tasks which may communicate using only compatirle
communication primitives

manaaementt refers to policies by which:

tasks are scheduled,

premature terminations are handled,

preemptive support is provided,

communication primitives are enabled/disabled, and

the manner in which resources are obtained and released

serial tasks are classified in terms of either:
o Coarse arain ...

Management policies codify how serial tasks are ™ ©F

to be managed ... independent of what they may be

Terminology: "Parallel Enabling Technologies"

Means to the end

Terminology: "Parallel Enabling Technologies"

Means to the end

* Bottom-up
OpenMP| OpenMP o Maximum flexibility
CUDA OpenGL e Maximum headaches

e Must implement fault tolerance

Terminology: "Parallel Enabling Technologies"

Means to the end

* Bottom-up
OpenMP| OpenMP o Maximum flexibility
CUDA OpenGL e Maximum headaches
Must implement fault tolerance
* Top-down
Hadoop Goldenorb e Limited flexibility
GraphLab e Fewer headaches

Fault tolerance is inherited

Terminology: "Parallel Enabling Technologies"

Means to the end

* Bottom-up
OpenMP| OpenMP o Maximum flexibility
CUDA OpenGL e Maximum headaches
Must implement fault tolerance
* Top-down
Hadoop Goldenorb e Limited flexibility
GraphLab e Fewer headaches

Fault tolerance is inherited

* Self-contained environment

e Maximum flexibility

e Fewest headaches

e Fault tolerance is inherited

SPM.Python

Terminology: "Parallel Enabling Technologies"

Means to the end

* Bottom-up
OpenMP| OpenMP o Maximum flexibility
CUDA OpenGL e Maximum headaches
e Must implement fault tolerance
* Top-down

Hadoop G

i meworks
N environments/ins\a\latlons for N Fra

e IS Inherited
* Self-contained environment

e Maximum flexibility

e Fewest headaches

e Fault tolerance is inherited

SPM.Python

Terminology: "Parallel Enabling Technologies"

Means to the end

* Bottom-up
OpenMP| OpenMP o Maximum flexibility
CUDA OpenGL e Maximum headaches
e Must implement fault tolerance
* Top-down

Hadoop Golden —
i W
N environments/insta\\atlons for N Frame

—

* Self-contained environment

nent/ir sta tior S S
One e WIror al s N suites O Pclo ure

—

erance Is inherited

u]
L)
I
i
it

Terminology: "Parallel Enabling Technologies"
Means to the end

* Bottom-up

OpenMPI OpenMP

e Maximum flexibility
CUDA OpenGL e Maximum headaches
e Must implement fault tolerance
* Top-down
Hadoop Goldenorb

GNU/Linux []

spm.pyt

hon ...
mgi(un

./hello_world -prefix "api"

«0O)>» «F»r» « 2>

«E>» =

DA

Anatomy: Timeline (Cont'd)

Hub

Anatomy: Timeline (Cont'd)

Hub mpirun

-0~

€ 0:xit();

Anatomy: Timeline (Cont’d)

(Hub)(mpirun)(Spoke]

0

€ 0:xit();

Anatomy: Timeline (Cont’d)

(Hub)(mpirun)(Spoke](orted)

-0

€ 0cxit();

Anatomy: Timeline (Cont’d)

(Hub)(mpirun)(Spoke](orted)(wrapper]

-0~

<€ exit();
€ Qcxit();

Anatomy: Timeline (Cont’d)

(Hub)(mpirun)(Spoke orted)(wrapper Appllcatlon

' *exn)
€ exit();

Anatomy: Timeline (Cont’d)

(Hub)(mpirun)(Spoke orted)(wrapper Appllcatlon

' *exn)
€ exit();

Anatomy: Timeline (Cont’d)

(Hub)(mpirun)(Spoke](orted)(wrapper](Application)

<€ exit();

Anatomy: Timeline (Cont'd)

Hub mpirun Spoke orted wrapper Application

e orted
Monitor:

e orted

e wrapper

e mpirun
Monitor:

e mpirun

e Spokes

Executio

e Application
Monitor/Timeout:
e Application

J<—e-it0;
@exit();

<
|<—oexit<>;
€« 0:xit0);

Launch:
e mpirun
Monitor:
o mpirun
® Spokes

——@exit();

Spoke [orted][wrapper][Application]

e @ €11 () ;

DA

Anatomy: Breakdown

Built-in Package Management System
e Selectively change default OpenMPI env

&£ N\

mpirun orted wrapper |(Application

Launch:
e mpirun
Monitor:
o mpirun
e Spokes

Built-in Package Management System

— e ———
>>> sys.path=[".", "/-@-/pkg.builtin", "/opt/default”]
>>> import pycuda

\ﬁ e

Built-in Package Management System

sys.path=[".", "/-@-/pkg.builtin”, "/opt/default”]
import pycuda _/

>>>
>>>

Built-in Package Management System

— e — e e —m T —
>>> sys.path=[".", "/-@-/pkg.builtin”, "/opt/default”]
>>> import pycuda

(e J (Spoke)

Built-in Package Management System

>>>
>>>

sys.path =[".", "/-@-/pkg.builtin", "/opt/default”]
import pycuda

Built-in Package Management System

>>> sys.path=[".", "/-@-/pkg.builtin", "/opt/default"”]
>>> import pycuda

(i) (Spoke)

Built-in Package Management System

>>> sys.path=[".", "/-@-/pkg.builtin", "/opt/default”]
>>> import pycuda

(—) (Spoke J

Built-in Package Management System

>>> sys.path=[".", "/-@-/pkg.builtin", "/opt/default”]
>>> import pycuda

(o J (Spoke)

Built-in Package Management System

>>> sys.path=[".", "/-@-/pkg.builtin", "/opt/default"”]

Zoz fmeen pﬁ‘“’i__/fm

(Spoke)
X XGED

(i) (Spoke)

(Spoke]

X X X = Uncatchable exception

Anatomy: Breakdown

mpirun

Launch:
e mpirun
Monitor:
o mpirun
e Spokes

p

K a

(orted)(wramper) (wptication)

Redirection of library calls

e Augment libmpi.so, libc.so ...

with libSPM.so

Redirecting Shared Library Calls

SPMMPI_Init(...) {

}

return MPL_Init(...);
libmpi.so

MPI_Init(...) {)
-
libc.so

exit(...) { &
:

A

Redirecting Shared Library Calls

SPMMPL Init(...) {
return MPL_Init(...);
}

/

MPI_Init(...) { X
=

%(M)ﬁ

J

exit(...) { S
:

Redirecting Shared Library Calls

,-(OpenMPI Application}

N\V\)“““"x‘

MPl_lnit_thread(...);

exit(.-.)s

sgrat-

7

/ SPMMPT Init(..) { (

return MPL_Init(...);
}

/

MPL_Init(...) { ‘
=

%(M)ﬁ

J

exit('.“)(&
:

Anatomy: Breakdown

p 1 a

(arted)(wrapper) (eelication)

Launch: ‘
e mpirun
Monitor:
o mpirun
e Spokes
(]
®

Second Parallel Capability
e ~ 60-line python script
e Authored by developer

Second Parallel Capability

Declaration + Definition of Pclosure]\/\

Q@ (predicateCb)
Q (predicateCb
def _ init():

return

(signature "signature: :Hub’,
stagelCb _ taskStat,
)i

Second Parallel Capability

Population + Invocation of Pclosure |

(predicateCb =)
Q (predicateCb =)
def main (pool,
taskApiArgs,
taslemeout)
/st UJOL/

pc stageO init.main (typedef = ...);

hdl ayload tie();
P t te task
hdl.spm.meta.label = "xxx'; # Not interested.

hdl.spm.meta.apiArgs = taskApiArgs;

timeoutWaitForSpokes
timeoutExecution

)

hdl.spm.meta.timeout taskTimeout;

Invoke the pmanager

__pc.stage0.event .manage (pool = pool,
nSpokesMin = ...
nSpokesMax =

return;

Second Parallel Capability

Typedef for Template Task]_/\/___

IRy
task<template> ::struct {
SPM component ...
spm ::struct {
meta ::struct {
label :scalar<stringSnippet> = deferred;
apiArgs :dict<string, mixed> = deferred;
timeout :scalar<timeout> = deferred;
}i
core ::struct {
relaunchPre ::scalar<bool> = None;
relaunchPost ::scalar<bool> = None;
nameHost :scalar<auto> = None;
whoAmI :scalar<auto> = None;
};
stat ::struct {
exception : :scalar<auto> = None;
returnValue ::scalar<record> = None;
};
};
non-SPM component

’
nun

Second Parallel Capability

Callback for Status Reports]_\/_

Q@ (predicateCb =)
Q (predicateCb =)
def _ taskStat (pc):
try:
hdl = pc.stagel.payload.tie();
returnValue = hdl.spm.stat.returnValue;
if (returnValue.Has (attr = ’'stdOut’)):
print ("\tstdOut : %s", returnValue.stdOut);
if (returnValue.Has (attr = ’'stdErr’)):
print ("\tstdErr : %$s", returnValue.stdErr);
if (returnValue.Has(attr = ’'stdOutErr’)):

print ("\tstdOutErr: %s", returnValue.stdOutErr);
except (’

), (hdl,):
pass;

return (pc.stagel.event.done(),

’

) [=11;

SPM.Python Session

GNU/Linux []

import pool
import demo
import os;
taskApiArgs = \
(app
appOptions

;

taskTimeout =

demo.main (pool
taskApiArgs
taskTimeout

demo.main (pool
taskApiArgs
taskTimeout

()
GNU/Linux []

os.getcwd ()
"-prefix="app’",

+ ’/hello_world’,

(seconds = 10);
pool.intraAll(),
taskApiArgs,

taskTimeout)

pool.intraOnePerServer (),
taskApiArgs,
taskTimeout)

Conclusion

Prototyping should e frictionless

Must use original OpenMPI application
® original source code
® original binary

v

Original OpenMPI application must inherit support for:
¢ fault tolerance
¢ timeout
® detecting deadlocks

spm.python ..

mpiMn /hello_world -prefix "api"

Conclusion (Cont'd)

http://www.mbasciences.com

SPM.Python distribution
Technical Briefs
Parallel Management Patterns

Elementary]

Parallel Primitives

Data / Graph
Parallel Primitives

HPC
Parallel Primitives
O Partition
® Grid/OpenMPI

o Clone

® Once
® Repeat

O Partition

o Data Flow
e Graph

O Partition

e DAG
o List

Limited Beta

Nov 30 Stanford U

o PartitionAggregate Dec 6

o Centralized
® Decentralized

http://www.mbasciences.com

