Mrs: MapReduce for Scientific Computing in Python

Andrew McNabb, Jeff Lund, and Kevin Seppi

Brigham Young University

November 16, 2012
MapReduce

- Large scale problems require parallel processing
- Communication in parallel processing is hard
- MapReduce abstracts away interprocess communication
- User only has to identify which parts of the problem are embarrassingly parallel
import mrs

class WordCount(mrs.MapReduce):
 def map(self, line_num, line_text):
 for word in line_text.split():
 yield (word, 1)

 def reduce(self, word, counts):
 yield sum(counts)

if __name__ == '__main__':
 mrs.main(WordCount)
Iterative MapReduce
Hadoop

- Hadoop is the most widely used open source MapReduce implementation
- Hadoop was designed for big data, not scientific computing
- Requires the use of HDFS and a dedicated cluster
What does an ideal MapReduce implementation look like in the context of scientific computing?
Ease of Development

- Rapid prototyping
- Testability
- Debuggability
```java
public class WordCount {
    public static class TokenizerMapper
        extends Mapper<Object, Text, Text, IntWritable> {
            private final static IntWritable one = new IntWritable(1);
            private Text word = new Text();
            public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
                StringTokenizer itr =
                    new StringTokenizer(value.toString());
                while (itr.hasMoreTokens()) {
                    word.set(itr.nextToken());
                    context.write(word, one);
                }
            }
            public static class IntSumReducer
                extends Reducer<Text,IntWritable,Text,IntWritable> {
                private IntWritable result = new IntWritable();
                public void reduce(Text key, Iterable<IntWritable> values,
                    Context context)
                    throws IOException, InterruptedException {
                    int sum = 0;
                    for (IntWritable val : values) {
                        sum += val.get();
                    }
                    result.set(sum);
                    context.write(key, result);
                }
            }
            public static void main(String[] args) throws Exception {
                Configuration conf = new Configuration();
                String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
                if (otherArgs.length != 2) {
                    System.err.println("Usage: wordcount <in> <out> ");
                    System.exit(2);
                }
                Job job = new Job(conf, "word count");
                job.setJarByClass(WordCount.class);
                job.setMapperClass(TokenizerMapper.class);
                job.setCombinerClass(IntSumReducer.class);
                job.setReducerClass(IntSumReducer.class);
                job.setOutputKeyClass(Text.class);
                job.setOutputValueClass(IntWritable.class);
                FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
                FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
                System.exit(job.waitForCompletion(true) ? 0 : 1);
            }
        }
```
Ease of Deployment

- Dedicated cluster vs. supercomputers and private cluster
- Work with any filesystem
- Work with any scheduler
Ease of Deployment

pbs-hadoop.sh

Step 1: Find the network address.
ADDR=$(/sbin/ip -o -4 addr list "$INTERFACE"
 | sed -e 's;^[^*\.]*inet \([^/].*)/.*$;\1;')

Step 2: Set up the Hadoop configuration.
export HADOOP_LOG_DIR=$JOBDIR/log
mkdir $HADOOP_LOG_DIR
export HADOOP_CONF_DIR=$JOBDIR/conf
cp -R $HADOOP_HOME/conf $HADOOP_CONF_DIR
sed -e "s/MAP_TASKS/$MAP_TASKS/g" \
 -e "s/REDUCE_TASKS/$REDUCE_TASKS/g" \
 -e "s/TASKS_PER_NODE/$TASKS_PER_NODE/g" \
 <$HADOOP_HOME/conf/hadoop-site.xml \
>"$HADOOP_CONF_DIR/hadoop-site.xml"

Step 3: Start daemons on the master.
HADOOP="$HADOOP_HOME/bin/hadoop"
$HADOOP namenode -format # format the hdfs
$HADOOP_HOME/bin/hadoop-daemon.sh start namenode
$HADOOP_HOME/bin/hadoop-daemon.sh start jobtracker

Step 4: Start daemons on the slaves.
ENV=". $HOME/.bashrc;
 export HADOOP_CONF_DIR=$HADOOP_CONF_DIR;
 export HADOOP_LOG_DIR=$HADOOP_LOG_DIR"
pbsdsh -u bash -c "$ENV; $HADOOP datanode" &
pbsdsh -u bash -c "$ENV; $HADOOP tasktracker" &
sleep 15

Step 5: Run the User Program
$HADOOP dfs -put $INPUT $HDFS_INPUT
$HADOOP jar $PROGRAM ${ARGS[@]}
$HADOOP dfs -get $HDFS_OUTPUT $OUTPUT

Step 6: Stop daemons on the slaves and master.
kill %2 # kill tasktracker
kill %1 # kill datanode
$HADOOP_HOME/bin/hadoop-daemon.sh stop jobtracker
$HADOOP_HOME/bin/hadoop-daemon.sh stop namenode
Other Issues

- Iterative performance
- Fault tolerance
- Interoperability
What is Mrs?

- Aims to be a simple to use MapReduce framework
- Implemented in pure Python
- Designed with scientific computing in mind
Why Python?

- Python is nearly ubiquitous
- Mrs needs no dependencies outside of standard library
- Familiarity and readability
- Easy interoperability
- Debugging and testing
- One downside: GIL
Iterative MapReduce

Input → Map → Reduce → Map → Reduce
Input → Map → Reduce → Map → Reduce
Input → Map → Reduce → Map → Reduce
Iterative MapReduce: ReduceMap
Automatic Serialization

- Serialization happens every time a task communicates with another machine.
- Mrs automatically handles this with pickle.
- Hadoop requires Writable classes everywhere.
Debugging: Run Modes

- Serial
- Mock Parallel
- Parallel
Debugging: Random Number Generators

- Seeding random number generators makes results reproducible
- Need different seed for each task
- Mrs has random function which lets you create a random number generator with an arbitrary number of offset parameters
 - ex. `rand = self.random(id, iter)`
Performance and Case Studies

Interpreter overhead does not preclude good performance for Mrs. We demonstrate on three different problems:

- Halton Sequence:
 CPU bound benchmark
- Particle Swarm Optimization:
 CPU bound application
- Walk Analysis:
 IO bound application
Performance and Case Studies

Optimization Story:

- Make sure you have the right algorithm
- Careful profiling
- Run with PyPy
- Rewrite critical path in C
Monte Carlo Pi Estimation

- Monte Carlo algorithm for computing the value of π by generating random points in a square
- Very little data, but computationally intense
- We can control how much computation each map task performs
Monte Carlo Pi Estimation

Mrs using pure Python

- Hadoop (Java)
- Mrs (PyPy)
- Mrs (cPython)
Monte Carlo Pi Estimation

Python with inner loop in C (using ctypes)

Time (seconds)

Points Per Map Task
Particle Swarm Optimization

- Inspired by simulations of flocking birds
- Particles interact while exploring
- Map: motion and function evaluation
- Reduce: communication
- CPU bound problem
Particle Swarm Optimization

Convergence plots for the Rosenbrock-250 function
Walk Analyzer

- Involves analyzing random walks in a graph
- Heavy IO bound
- Average Hadoop Time: 1:06:53
- Average Mrs Time: 52:55
Where to find Mrs

Mrs Homepage with links to source, documentation, mailing list, etc:
http://code.google.com/p/mrs-mapreduce
In case you forget the url, just google “mrs mapreduce” :)

Other cool features I neglected to mention...

- Reduce merge sort
- Asynchronous MapReduce
- Concurrent Convergence Checks
- Memory Logging
- Merge Sort Reduce Dataset
- Custom Serializer