Mrs: High Performance MapReduce for Iterative and Asynchronous Algorithms in Python

Jeff Lund, Chace Ashcraft, Andrew McNabb and Kevin Seppi

Brigham Young University

November 14, 2016
What is Mrs?

- Simple and easy to use MapReduce framework
- Implemented in pure Python
- Designed with scientific computing in mind
Example: WordCount

```python
import mrs

class WordCount(mrs.MapReduce):
    def map(self, line_num, line_text):
        for word in line_text.split():
            yield (word, 1)

    def reduce(self, word, counts):
        yield sum(counts)

if __name__ == '__main__':
    mrs.main(WordCount)
```
Why Python?

- Python is nearly ubiquitous
- Mrs needs no dependencies outside of standard library
- Familiarity and readability
- Easy interoperability
- Debugging and testing
Iterative MapReduce

Performance Challenges:

- CPU bound problems
- Communication time
- Task Management
Proposed Solutions

- Infrequent Checkpointing
- Reduce-Map task
- Generator-Callback Model
- Asynchronous Scheduling Model
How Often to Checkpoint

Let X be a random variable indicating a failure occurred during an iteration, then

$$X \sim \text{Bernoulli} \left(\frac{1}{f} \left(t + \frac{c}{n} \right) \right)$$

- n: Number of iterations between checkpoints
- t: Time to perform each iteration
- c: Extra time required for a checkpointed iteration
- f: Failures in a cluster
If $Y \sim Uniform(n)$ indicates the number of iterations since last checkpoint then the expected value of the number of seconds of extra work in an iteration is:

$$E[X(r + Yt)] = \frac{1}{f} \left(t + \frac{c}{n} \right) \left(r + \frac{n}{2}t \right)$$

and the breakeven number of iterations is

$$n = \max \left[1, \frac{1}{t} \left(\sqrt{\left(\frac{c}{2} + r \right)^2 - 2c(r - f)} - \left(\frac{c}{2} + r \right) \right) \right].$$
Iterative MapReduce: ReduceMap
def run_batches():
 data_path = input_path
 for iteration in range(MAX_ITERATIONS):
 output_path = make_temp_path()
 job = new_job(data_path, map_func, reduce_func, output_path)
 job.wait_for_completion()
 data_path = output_path

 if iteration % CHECK_FREQUENCY == 0:
 data = read_all(data_path)
 perform_output(data)
 if converged(data):
 break
def generator(queue):
 dataset = input_data
 for iteration in range(MAX_ITERATIONS):
 output_path = make_temp_path()
 dataset = mapreduce(dataset, map_func, reduce_func, output_path)
 if iteration % CHECK_FREQ == 0:
 queue.submit(dataset, callback)
 else:
 queue.submit(dataset, None)

def callback(data):
 data.read_all()
 perform_output(data)
 return not converged(data)
Task Dependencies: Synchronous MapReduce
Task Dependencies: Asynchronous MapReduce
Task Execution Traces

Synchronous:

Asynchronous:
Performance and Case Studies

We demonstrate on two different problems:

- Particle Swarm Optimization
 Minimize 250 degree Rosenbrock function
- Expectation Maximization
 Mixture of Multinomials model in the context of clustering text documents
Particle Swarm Optimization

- Inspired by simulations of flocking birds
- Particles interact while exploring
- Map: motion and function evaluation
- Reduce: communication
- CPU bound problem
Particle Swarm Optimization

![Graph showing Parallel Efficiency vs. Number of subiterations for different storage scenarios.]

- **Reduce-map tasks**
- **Rare checks**
- **Concurrent checks**
- **No redundant storage**
- **Redundant storage**
Particle Swarm Optimization: Asynchronous

![Graph showing comparison between Asynchronous and Synchronous processing]

- **Y-axis**: Average Tasks per Second
- **X-axis**: Standard deviation of subiterations

Legend:
- Asynchronous
- Synchronous
Particle Swarm Optimization: Asynchronous

![Graph showing the comparison between synchronous and asynchronous Particle Swarm Optimization. The x-axis represents the number of processors, ranging from 16 to 768. The y-axis represents the average tasks per second. The graph compares synchronous (blue dots) and asynchronous (red squares) performance. The traditional synchronous approach shows a linear growth in tasks per second with an increase in processors, whereas the asynchronous approach demonstrates a more rapid increase in tasks per second, especially at higher processor counts.](image-url)
Expectation Maximization

<table>
<thead>
<tr>
<th>Feature Set Size</th>
<th>80</th>
<th>252</th>
<th>8000</th>
<th>25298</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce-map tasks</td>
<td>0.411</td>
<td>0.357</td>
<td>0.277</td>
<td>0.193</td>
</tr>
<tr>
<td>Rare checks</td>
<td>0.362</td>
<td>0.314</td>
<td>0.253</td>
<td>0.18</td>
</tr>
<tr>
<td>Redundant storage</td>
<td>0.013</td>
<td>0.013</td>
<td>0.013</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Parallel efficiency per iteration of EM for various feature set sizes.
Conclusion

By taking the following approaches, we have considerably improved performance for iterative parallel algorithms in Mrs:

- Infrequent Checkpointing
- Reduce-Map Task
- Generator-Callback Model
- Asynchronous Model
Where to find Mrs

Mrs Homepage with links to source, documentation, mailing list, etc: https://github.com/byu-aml-lab/mrs-mapreduce
In case you forget the url, just google “mrs mapreduce” :)