Dynamic provisioning and execution of HPC workflows using Python

Chris Harris, Patrick O’Leary, Michael Grauer, Aashish Chaudhary, Chris Kotfila and Robert O’Bara
Overview

● Motivation
● HPC Workflows
● HPC Resources
● Cluster provisioning
● Data management
● Job submission
● Workflow orchestration
● Result/Applications
● Conclusion
Motivation

- HPC workflows have enabled significant research advances
- Barriers to widespread adoption remain
 - Complex to use
 - Require specialist local expertise
 - Expensive dedicated hardware
Cumulus

● Platform for dynamic provisioning and execution of HPC workflows
● Intended to make HPC workflows more accessible to developers
● Key functionality
 ○ Cluster provisioning
 ○ Data management
 ○ Job submission
 ○ Workflow orchestration
HPC Workflows

- Are tasks executed in order to carry out some computation on a HPC resource
- Jobs running on HPC resources
 - Simulation code
 - Data processing
- Auxiliary task run outside HPC resources
 - Transferring input data to HPC resource
 - Post-processing of results
HPC Resources

● “Traditional” HPC Resources
 ○ Dedicated hardware using sophisticated interconnects

● “Dynamic” HPC Resources
 ○ Built on demand from virtual server in public or private cloud
 ■ AWS EC2
 ■ OpenStack
 ○ Size and characteristics tailored to workflow
 ○ Only pay for what you use
 ○ Interconnects are significantly slower
Design principles

- Hide complexity associated with HPC workflows
 - Application development rather than infrastructure
- Allow workflows to be portable across HPC resources
- Expose RESTful endpoints
 - Language agnostic for clients
Cluster provisioning

- Launch and provision dynamic clusters tailored to a specific workflow
- Process composed of two steps
 - Launching
 - Runtime Provisioning
- Ansible
 - Automation tool for system configuration and software deployment
 - Declarative operations defined through
 - Reusable roles
 - Use case specific playbooks
Cluster provisioning - Launching

- Creating the virtual servers in the cloud environment
 - Tailor machine type and cluster size

- Machine images
 - Template from which virtual servers are created
 - Base operating system and software
 - Workflow specific images
 - Pre-installed software stack
 - Reproducible environment
 - Reduce cluster startup time
Cluster provisioning - Runtime provisioning

- Runtime configuration
 - E.g. configuration involving network topology
- Built-in support for MPI environment using SGE
- Additional playbooks can be added
 - E.g. Apache Spark.
Data management

- **HPC workflows are data driven**
 - Cluster and input configurations
 - Output dataset
 - Performance statistics
- **Appropriate access controls needed**
- **Girder**
 - Open-source web-based data management platform
 - Exposes RESTful endpoint
 - Provides cumulus with three key pieces of functionality
 - Data organization and access
 - User management and authentication
 - Authorization management
Job submission

- Cumulus using conventional job schedulers
 - SGE, PBS and Slurm (+NEWT)
- Provides a scheduler provides abstraction
- Access to HPC resources through SSH
 - Key-based authentication
 - Provides a secure and standard interface to a variety of
 - Public and private traditional HPC resources
 - Cloud based HPC resources
Workflow orchestration

- Combines the *cluster provisioning, data management and job submission* into a workflow
- Workflow topology
 - Simple linear flows
 - Complex flows containing branches and loops
- Efficient and scalable
 - Workflows are potentially very long lived
 - Consume minimal resources while monitoring HPC jobs
Workflow orchestration - TaskFlow

- TaskFlow - A simple yet powerful workflow engine built on Celery
- Celery
 - Open-source asynchronous task queue
 - Tasks are simple Python functions
 - Simple linear scaling
Applications - HPCCloud

- Web-based simulation environment
 - High-level workflows
 - Simple intuitive web UI
- Motivated Cumulus development
- Implements a number of workflows
 - PyFR simulations
 - ParaViewWeb visualization
Applications - ModelBuilder

- Computational Model Builder (CMB) framework
 - Advanced simulation workflows on the desktop
- Multiphysics workflows
 - Particle accelerator simulations
- Qt desktop application
 - API validation in non-web environment
Conclusion

● Cumulus is a novel platform for developing end-to-end HPC workflows
 ○ Targeting traditional and cloud-based HPC resources

● The platform provides
 ○ Cluster provisioning
 ○ Data management
 ○ Job submission
 ○ Workflow orchestration

● Its capabilities have been demonstrated in a variety of end-user applications