DLR Portal
Home|Sitemap|Kontakt|Barrierefreiheit Impressum und Nutzungsbedingungen Datenschutz Cookies & Tracking |English
Sie sind hier: Home:Aktuelles:Veranstaltungen:PyHPC 2016
Erweiterte Suche
Aktuelles
Veranstaltungen
VESTEC Online-Abschlussworkshop 2022
TiGL Workshop 2018
PyHPC 2011
CPACS/RCE2012
PyHPC 2012
PyHPC 2013
IPAW 2014
SECESA 2014
PyHPC 2014
PyHPC 2015
PyHPC 2016
PyHPC 2017
PyHPC 2018
Archiv
Institut
Abteilungen
Themen
Projekte
Software
Veröffentlichungen
Karriere
Abstracts
Zurück
Drucken

Migrating legacy Fortran to Python while retaining Fortran-level performance through transpilation and type hints



Mateusz Bysiek, Aleksandr Drozd and Satoshi Matsuoka

We propose a method of accelerating Python code by just-in-time compilation leveraging type hints mechanism introduced in Python 3.5. In our approach performance-critical kernels are expected to be written as if Python was a strictly typed language, however without the need to extend Python syntax. This approach can be applied to any Python application, however we focus on a special case when legacy Fortran applications are automatically translated into Python for easier maintenance. We developed a framework implementing two-way transpilation and achieved performance equivalent to that of Python manually translated to Fortran, and better than using other currently available JIT alternatives (up to 5x times faster than Numba in some experiments).


PyHPC2016
Program
Call for Papers
Abstracts
PyHPC Workshop Series
PyHPC 2011 (Seattle, USA)
PyHPC 2012 (Salt Lake City, USA)
PyHPC 2013 (Denver, USA)
PyHPC 2014 (New Orleans, USA)
PyHPC 2015 (Austin, USA)
PyHPC 2016 (Salt Lake City, USA)
PyHPC 2017 (Denver, USA)
Copyright © 2022 Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR). Alle Rechte vorbehalten.