DLR Portal
Home|Sitemap|Kontakt|Barrierefreiheit Impressum und Nutzungsbedingungen Datenschutz Cookies & Tracking |English
Sie sind hier: Home:Aktuelles:Veranstaltungen:PyHPC 2016
Erweiterte Suche
Aktuelles
Veranstaltungen
VESTEC Online-Abschlussworkshop 2022
TiGL Workshop 2018
PyHPC 2011
CPACS/RCE2012
PyHPC 2012
PyHPC 2013
IPAW 2014
SECESA 2014
PyHPC 2014
PyHPC 2015
PyHPC 2016
PyHPC 2017
PyHPC 2018
Archiv
Institut
Abteilungen
Themen
Projekte
Software
Veröffentlichungen
Karriere
Abstracts
Zurück
Drucken

PALLADIO: a parallel framework for robust variable selection in high-dimensional data



Matteo Barbieri, Samuele Fiorini, Federico Tomasi and Annalisa Barla

The main goal of supervised data analytics is to model a target phenomenon given a limited amount of samples, each represented by an arbitrarily large number of variables. Especially when the number of variables is much larger than the number of available samples, variable selection is a key step as it allows to identify a possibly reduced subset of relevant variables describing the observed phenomenon. Obtaining interpretable and reliable results, in this highly indeterminate scenario, is often a non-trivial task. In this work we present PALLADIO, a framework designed for HPC cluster architectures, that is able to provide robust variable selection in high-dimensional problems. PALLADIO is developed in Python and it integrates CUDA kernels to decrease the computational time needed for several independent element-wise operations. The scalability of the proposed framework is assessed on synthetic data of different sizes, which represent realistic scenarios.


PyHPC2016
Program
Call for Papers
Abstracts
PyHPC Workshop Series
PyHPC 2011 (Seattle, USA)
PyHPC 2012 (Salt Lake City, USA)
PyHPC 2013 (Denver, USA)
PyHPC 2014 (New Orleans, USA)
PyHPC 2015 (Austin, USA)
PyHPC 2016 (Salt Lake City, USA)
PyHPC 2017 (Denver, USA)
Copyright © 2022 Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR). Alle Rechte vorbehalten.