DLR Portal
Home|Sitemap|Kontakt|Barrierefreiheit Impressum und Nutzungsbedingungen Datenschutz Cookies & Tracking |English
Sie sind hier: Home:Aktuelles:Veranstaltungen:PyHPC 2011:Abstracts
Erweiterte Suche
Aktuelles
Veranstaltungen
VESTEC Online-Abschlussworkshop 2022
TiGL Workshop 2018
PyHPC 2011
CPACS/RCE2012
PyHPC 2012
PyHPC 2013
IPAW 2014
SECESA 2014
PyHPC 2014
PyHPC 2015
PyHPC 2016
PyHPC 2017
PyHPC 2018
Archiv
Institut
Abteilungen
Themen
Projekte
Software
Veröffentlichungen
Karriere
Abstracts
Zurück
Drucken

pandas: a Foundational Python Library for Data Analysis and Statistics

Wes Mckinney



In this paper we will discuss pandas, a Python library of rich data structures and tools for working with relational or "labeled" data sets common to statistics, finance, social sciences, and many other fields. The library provides integrated, intuitive routines for performing common data manipulations and analysis on such data sets. It aims to be the foundational layer for the future of statistical computing in Python. It serves as a strong complement to the existing scientific Python stack while implementing and improving upon the kinds of data manipulation tools found in other statistical programming languages such as R. In addition to detailing its design and features of pandas, we will discuss future avenues of work and growth opportunities for statistics and data analysis applications in the Python language.

PyHPC2011
Call for Papers
Program
Abstracts
Program Committee
Downloads
PyHPC2011-Program (0,2 MB)
PyHPC2011-CfP (0,33 MB)
Links
SC11
Workshop Python for High Performance and Scientific Computing (SC11)
Submission page (EasyChair)
Birds of a Feather Python for High Performance Computing (SC11)
Facebook event page
Twitter @PyHPC2011
Copyright © 2022 Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR). Alle Rechte vorbehalten.