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Abstract—A very simple, and outside NumPy, commonly used
trick of buffer-reuse is introduced to the NumPy library to speed
up the performance of scientific applications in Python/NumPy.
The implementation, which we name software victim-caching, is
very simple. The code itself consists of less than 100 lines of
code, and took less than one day to add to NumPy, though it
should be noted that the programmer was very familiar with
the inner workings of NumPy. The result is an improvement of
as much as 2.29 times speedup, on average 1.32 times speedup
across a benchmark suite of 15 applications, and at no time did
the modification perform worse than unmodified NumPy.

I. INTRODUCTION

Python/NumPy is gaining momentum in high performance
computing, often as a glue language between high performance
libraries, but increasingly also with all or parts of the func-
tionality written directly in Python/NumPy. Python/NumPy
represents an easy transition from Matlab prototypes, to
the extent where we observe scientists working directly in
Python/NumPy since their productivity is as high as in Matlab.
While Python/NumPy is still not as efficient as C++ or Fortran,
which are the more common HPC languages, the productivity
of the higher-level language often becomes the choice of the
programmer. As a rule of thumb, we expect Python/NumPy
to be approximately four to five times slower than C, and the
balance in choosing a programming language is thus often
a balance between faster programming or faster execution
and is stands to reason that, as Python/NumPy solutions
close the performance gap to compiled languages, the higher
productivity language will gain further traction. In our work
to improve the performance of NumPy[1] we came across a
behavior which we initially attributed to our work on cache
optimizations, turned out to be the effects of a far simpler
scheme where by temporary array allocations in NumPy are
more efficiently reused.

The amount of memory that is reserved for buffer-space is
naturally defined by the user through a standard environment
variable. In this work, we experiment with three fixed buffer-
sizes 100, 512 and 1024 mega bytes. Programmers can exper-
iment with different buffer-sizes, however, very large buffers
rarely make an impact.

The resulting changes to NumPy, less than 100 lines in
total, counted using SLOCCount[2], provides advantages over
conventional NumPy from none, but never worse, to 2.29 times
speedup. Our suite of 15 benchmarks has an average speedup
of 1.32, and thus, with no requirement to the application
programmer closes the gap to compiled languages a little
further.

The rest of this paper is comprised as follows; related work
since this is not a new idea outside Python, a section on the
implementation details, then the benchmarks are introduced
and results are presented.

II. RELATED WORK

In computer architecture, a victim-cache is a small fully-
associative cache where any evicted cache-line is stored and
thus granted an extra chance for remaining in the cache, before
being finally evicted[3]. At the CPU level victim-caching is
particularly efficient at masking cache-line tag conflicts. Since
NumPy does not have any cache, the victim cache may appear
unrelated, but the idea of a fully associative cache that holds
buffers a little while until they are fully evicted, is very similar.

In functional languages a similar buffer reuse scheme, copy
collections, is found efficient in [4]. In this work, the buffer
is very large, and numerous techniques for buffer location and
replacement are considered; most of this is similar to page
replacement algorithms at the operating system level.

Keeping control of buffers in relational databases is fairly
closely related to maintain NumPy buffers, since relational
databases also have a high locality of similar sized buffers[5]
but dissimilar to NumPy, the space available for buffers is very
high, and a more advanced replacement algorithm is needed
since databases are multiuser systems, and the buffer patterns
is thus less simple than what we can observe in NumPy.

Even though the victim cache technique itself is not related
to garbage collection, the idea of memory reuse is very similar.
Within a runtime with managed garbage collection, memory al-
locations are pooled to avoid repeated requests to the operating
system[6]. While this is useful for repeated small allocations,
most implementations assume that large allocations will stay
in memory.

III. SOFTWARE VICTIM-CACHING

We have dubbed the adopted technique software victim-
caching, since the basic functionality is very similar to victim-
caching as it is known in computer architecture. The idea is
very simple; when NumPy releases an array we do not release
the memory immediately, but keep the buffer in a victim-cache,
when NumPy issues a new array allocation we first do a lookup
in the victim-cache, and if a matching array is found, it is
returned rather than a new array allocation.

Different matching and eviction algorithms have been ex-
perimented with, see section III-C for further details. Note that
only full allocations are returned from the victim-cache, we do



not try to use partial arrays or merge arrays to find a match,
or in any other way attempt conventional heap management.

The logic behind this very naÃ¯ve approach is fairly simple
as well; scientific applications are most often comprised of
dense loops any temporary array allocation is due to this very
likely to be observed again very soon after being released. In
addition, the temporary arrays that are allocated for different
operations on the same user defined array are likely to be of
identical dimensions as well.

A. Temporary Arrays

Temporary arrays are instantiated by NumPy whenever
an intermediate result is needed. The general case is; an
expression consisting of more than a single operator and
thereby creating a complex expression. As an example, assume
we wish to calculate the distance from (0, 0) for a set of (X,Y )
coordinates in NumPy we write:

distance = numpy.sqrt(X**2 + Y**2)

This operation will create three temporary arrays, plus a
non temporary which is returned to distance, the X2, Y 2, and
+ operations will each allocate a temporary array which is
discarded after the line is executed, the square root operation
also allocates an array, which is returned to the distance array.
In this case, the first two temporary arrays are released once
the fourth allocation is called, and one of the first two could
be used since they match the allocation perfectly.

B. Implementation

The implementation is interface-compatible with malloc.
This allows for a very low-intrusion integration by only
changing 10 lines of code in the NumPy codebase. The imple-
mentation of the victim cache itself, including all matching and
eviction strategies mention in section III-C, is a total of 237
lines of code, where the simple version with only one strategy
is 81 lines. Figure 1 illustrates the data-structures, which are
maintained.

line = 4 
bytes_used = 100663296 
bytes_max  = 536870912 

line bytes pointer 

0 10485760 0xe3a3 

1 5242880 0xa2d3 

2 71303168 0x3133 

3 13631488 0x42a3 

4 0 0x0 

5 0 0x0 

6 0 0x0 

Victim Cache 

Fig. 1: Illustration of the victim-cache data-structures for a victim-cache with
seven cache-lines, a maximum size of 512MB and currently populated with
four entries consuming 96MB.

The simplest implementation maintains the currently con-
sumed bytes used of the victim-cache, the bytes max max-
imum number of bytes allowed for consumption, and the
currently used line in the victim-cache. The following section
describes different strategies of using the victim-cache. The

implementation is available as a github-fork1 of NumPy 1.7
on the branches victim cache and victim cache clean. The
branch victim cache contains the implementation featuring the
multiple algorithms which are described in the following sec-
tion. The branch victim cache clean contains the cleaned up,
less than 100 source-lines of code, implementation featuring
a single strategy and the possibility of enabling/disabling the
victim cache via environment-options.

C. Algorithms

Buffer management algorithms are a well researched
area[7]. However, for many scenarios a simple solution is as
good, or better, than advanced adaptive algorithms. For that
reason, we limit the experiments in this work to six well-
known algorithms. Three for matching buffers to requirements
and three for selecting a buffer to eliminate when the allocated
buffer space is saturated.

For matching buffers, we use three very simple algorithms,
Exact, First, and Best. Exact will only return a fit if the
requested buffer-size is exactly the same size as the buffer in
the victim cache. First will return the first of the tested buffers
large enough to hold the requested buffer. Best will search all
buffers in the victim-cache and return the buffer that is as large
as the requested size, and with as little extra space as possible.
If an exact match is found, it is returned immediately.

If the maximum allowed buffer size would be exceeded
by adding an allocation, an existing buffer in the cache must
be evicted. Choosing one can also be done in many ways
including Round-Robin, Second-Chance, and Random. Round-
Robin will evict buffers from the victim-cache in the order
they are added. If a buffer is selected for reuse, it will be
added to the end once it is released again. It could also be
described as evicting the oldest cache-line first. Second-chance
is well known from demand-paging in operating systems and
is aptly named. If a buffer is next to be evicted it will be
marked at ready-to-evict, but the algorithm will in-fact move
on in the list, only if a buffer is revisited, i.e. when a buffer
is marked as ready and is next to be evicted, will it actually
be selected for eviction. The worst case scenario is that all
buffers must be visited once before one can be chosen for
eviction, but in reality is will be more like round-robin, but
with a second chance for some buffers. Random selection
is extremely simple; a random buffer in the list is selected
for eviction, while this may appear as a strange choice this
approach has the advantage that it will not fall into a pattern
where the same set of buffers are continuously evicted.

As the applications that NumPy is commonly used for, are
highly regular in their execution pattern, we expect the simplest
algorithms to perform very well, i.e. Exact-fit for matching and
round-robin for eviction. If this is the case, there is no reason
to keep the more advanced algorithms in a final version and
the codebase can be kept very small indeed.

IV. COMPARISON

To evaluate the performance of the victim-cache, we have
chosen 15 different benchmarks, that use a broad range of
NumPy functionality. We have chosen some benchmarks that

1http://github.com/cphhpc/numpy/



operate on one-dimensional arrays and perform typical Monte
Carlo simulations. For two-dimensional benchmarks, we use
a selection of classic physics based computational kernels, for
higher dimensions, we use a 3D Lattice-Boltzmann simulation
and an n-body simulation. To show that the approach is also
valid in other scenarios, we also use naı̈ve implementations of
FFT, LU, and matrix multiplication. The source-code for the
benchmarks are available for closer inspection in the github-
fork 2 on the victim cache branch in the benchmark/Python/
folder.

A. One-dimensional benchmarks

For testing with one-dimensional applications, we have
chosen three different Monte Carlo based implementations.
The simplest version is the original Monte Carlo Pi simulation
that derives the value of π through a series of simulated dart
throws. The other two benchmarks are taken from financial
analysis domain and attempt to price a set of stock options,
using the Black-Scholes model for European pricing and swap-
tions in the LIBOR market model, respectively. The Monte
Carlo Pi simulation generates only a few temporary arrays
in each iteration, whereas the Black-Scholes implementation
generates as much as 67 temporary arrays in an iteration.
The number of temporary arrays generated by the Swaption
implementation varies with the input data and the amount of
elements in each temporary array is relatively small.

B. Two-dimensional benchmarks

For two-dimensional applications we have chosen a com-
mon Jacobi five-point stencil application, a successive over
relaxation (SOR), a shallow water simulation, a WireWorld
simulation, a Lattice-Boltzmann simulation and a cloth physics
simulation. The Jacobi stencil is chosen for its simplicity,
where the others are chosen because they are larger appli-
cations, which would be hard to optimize by hand. The SOR
simulation essentially does the same as the Jacobi stencil, but
implemented with a red/black update scheme, and includes
a global delta calculation. The Lattice-Boltzmann, shallow
water, and cloth simulations all simulate movement in a two-
dimensional space with different models for force propagation.
The Jacobi stencil code is fairly compact but still generates 9
temporary arrays in each iteration. The other benchmarks gen-
erate a larger number of temporary arrays that are candidates
for optimization from the victim cache.

C. Higher-dimensional benchmarks

To show the effects of the victim-cache with problems
that have multiple dimensions, we have chosen a some classic
computational kernels, namely a naı̈ve n-body simulation, a k-
nearest-neighbor search, and a Lattice-Boltzmann simulation in
3D space. The k-nearest-neighbors search has a low amount
of temporary arrays, and the n-body simulation and Lattice-
Boltzmann simulations have a moderate amount of temporary
arrays.

2http://github.com/cphhpc/numpy/

Benchmark Problemsize Iterations
Black Scholes 8 · 106 5
Bolzmann 3D 120 × 100 × 100 5
Bolzmann D2Q9 800 × 800 5
Cloth 3000 × 3000 1
FFT 18 N/A
Jacobi Stencil 10000 × 4000 × 10 10
KNN 2 · 106 × 10 3
LU Factor. 500 × 500 N/A
Matrix Mul 800 N/A
Monte Carlo PI 2 · 107 10
NBody 3000 × 1 1
Shallow Water 3000 × 3000 5
SOR 4000 × 4000 5
Swaption 1000 N/A
Wire World 5000 × 5000 5

TABLE I: Overview of benchmarks and problem sizes.

D. Kernel benchmarks

To broaden the experiment we have chosen a set of kernels
that are traditionally implemented in external libraries and
implemented them in NumPy. The kernels comprise naı̈ve
versions of matrix multiplication, LU factorization, and Fast
Fourier Transformation (FFT). The FFT kernel generates a low
amount of temporary arrays. The where the matrix multipli-
cation and LU kernels generate a large amount of temporary
arrays, where the arrays generated by the LU kernel are small,
and the ones generated by the matrix multiplication are large.

Table I provides the full list of benchmarks along with the
parameters for their execution.

E. Results

As the victim cache mitigates the work related to allocating
array memory from the operating system, there is a clear
relation between the number of temporary arrays and the
gained speedup. Figure 2 shows the speedups obtained from
running the same NumPy code with three different sizes of the
victim cache. Each benchmark has been set up with parameters
that cause the benchmarks to run around 10 seconds with no
victim cache. Each benchmark is then executed with the same
input data, and varying sizes of the victim cache and the wall-
clock times are used to compute the speedup. All benchmarks
are executed on a AMD Opteron 6272 CPU with 128 GB
of memory, running with Ubuntu 12.04.2 LTS. The execution
times were stable with a maximum wall-clock time deviation
of 0.08 seconds.

We can see that some experiments gain no speedup at
all, but none of the experiments show any slow down from
the victim cache. For our problem sizes, a moderate size
victim cache of 512 MB is sufficient to gain the maximum
performance speed up, except for the Jacobi example, which
shows a large speedup when utilizing 1GB of victim cache
memory.

The SOR, shallow water, and Jacobi benchmarks show as
much as 2.3 times speedup from using the victim cache, which
we consider a significant result. The following section provides
further analysis of the results.

F. Analysis

The results are quite convincing, while a few benchmarks
do not show any improvement in performance most do, and
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Fig. 2: Speedup of victim-cache in relation to unmodified Python/NumPy of
the 15 benchmark applications.

no less than four show a performance increase of more than
50%, two of more then 100%. At a first glance, it is hard to
see why a simple victim-cache can improve performance that
much. The explanation can be found in the way glibc under
Linux handles memory allocations. Any allocation to an area
that is larger than 128KB3, is allocated using mmap rather than
sbrk[8]. The consequence is that memory that is allocated with
mmap, will be released to the operating system, when free
is called. This means that the memory is actually returned to
Linux as opposed to memory that is allocated with sbrk, which
is kept for reuse by glibc. The consequence of this is that the
many, large, temporary array allocations in NumPy are moved
back and forth between user space and kernel space. The actual
call to the operating system represents an overhead in itself,
but the majority of the time is spent zeroing the memory to
stop information from leaking between processes. Thus the big
advantage of the victim cache model it that we save a write
to the temporary memory, which in effect doubles the cost of
simple array operations.

To verify that the above description is in fact the reason
for the observed performance improvements, the benchmarks
were repeated using the time tool in order measure time spend
in user-level and kernel-level respectively. Figure 3 show the
time spent in kernel-level for each benchmark, for standard
NumPy (Native), and the victim-cache implementation for
three different cache sizes. In this figure, lower means less
time spent in system.

There is an obvious correlation between the benchmark
where we observed improvement in the overall runtime, and
the drop in time spent in kernel-level. Moreover, going from
512MB to 1GB of victim-cache only shows a significant
impact in the Jacobi Stencil benchmark where time spent
in kernel-level is reduced by more than half. A manual
experiment to increase the victim-cache to 2GB showed no
further improvement in runtime.

3by default but may be changed by the user
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Fig. 3: Time spent in system/kernel-level reported in percentage of total wall-
clock time.
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Fig. 4: Comparison of fitting strategies.

We go on experimenting with the three different matching
algorithms, best-fit, first-fit, and exact-fit. Best-fit requires an
inspection of each element of the cache for each victim-cache
lookup, the consequence of which is clearly shown in figure
4. The difference between first-fit and exact-fit is marginal and
varies across the benchmark suite.

Figure 5 illustrates the results of experiments with different
eviction strategies. The random eviction-scheme, which is
known to work well for page-replacement in the operating
system, clearly does not apply for the victim-cache. This
result was expected since most benchmarks demonstrate a
high degree of regularity. Second change and oldest first are
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Fig. 5: Comparison of eviction strategies.

indistinguishable.

Given the interface compatibility and the previous descrip-
tion of malloc, a valid question is: ”why not just parameterize
malloc correctly?”. Because the zeroing memory only affects
allocations above MMAP_THRESHOLD bytes, one could con-
sider simply increasing MMAP_THRESHOLD. However, glibc
malloc does not allow for MMAP_THRESHOLD to go beyond
MMAP_THRESHOLD_MAX, which on 64-bit systems is only
4MB. Changing the maximum value would require recompil-
ing glibc and is thus a fairly intrusive procedure. A more
drastic approach would be to re-compile the Linux kernel
with __GFP_ZERO defined to zero, which would completely
eliminate the zeroing of pages across the operating system.

V. FUTURE WORK

The solution itself is quite simple, but the implementa-
tion may be subjected to further refinements. In the current
implementation, a rather simple list-based lookup search is
performed, yield a runtime complexity of O(n) over the
number of entries. Many better strategies exist, such as tree-
based lookups that can reduce this overhead.

The results presented in this article show that there is
indeed an overhead involved in the generation of temporary
arrays and that a victim cache can reduce the overhead by using
some extra memory. However, a more thorough approach is to
avoid creating the temporary arrays completely.

However, unlike the victim cache, such a change requires
changes in many places within the NumPy libraries. We are
actively investigating this approach as part of the Bohrium
runtime system[1].

We have produced a cleaned up version of the changes,
which only supports exact matching and round-robin eviction.
This cleaned up version is reduced to 81 lines of C-code,
combined with the ten lines in the NumPy multiarraymodule
brings the total lines of code in the victim-cache implementa-

tion up to 91. We plan to submit this patch to NumPy upstream
developers so NumPy user can reap the benefits discovered.

VI. CONCLUSION

We have implemented a very simple and non-intrusive
victim-cache in NumPy, and evaluated the effects on a variety
of different benchmarks. The experiments clearly show that the
victim-cache is able to reduce much of the overhead that occurs
when NumPy allocates memory from the operating system.
In no case did see an actual slowdown. Generally we see an
average improvement of 32% accross the benchmark suite, if
we cherry-pick only the benchmarks where we see an improve-
ment the average speedup is 52%. The best observed speedup
is 230% of the Jacobi Stencil benchmark. A victim-cache of
512MB was sufficient to harvest all the gains of victim-caching
in all benchmarks except one, the Jacobi Stencil.

We experimented with three different matching strategies,
and three different eviction strategies, however the high degree
of regularity in the benchmark suite meant that the simplest
algorithms exact-fit and oldest-eviction first performed as good
as or better than the more advanced strategies.

Overall we conclude that the victim-cache is a nearly cost-
free optimization, that potentially benefits more than half of
all NumPy applications, without any requirements towards
to programmer. The implementation comprises ten lines of
changes to the NumPy multiarraymodule and 81 lines for the
victim-cache itself, in total 91 lines of code.
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