Synergia: Driving Massively Parallel Particle
Accelerator Simulations with Python

James Amundson, Qiming Lu, and Eric Stern
Fermi National Accelerator Laboratory
Batavia, IL 60510
Email: amundson@fnal.gov

Abstract—Simulations of beam dynamics in particle acceler-
ators have a wide range of computational requirements. The
simplest calculations involve independent-particle tracking of
a few thousand particles which can easily be accomplished
on modern desktop computers. Calculations involving collective
effects may require millions or even billions of particles and push
the limits of modern supercomputers. We describe Synergia, a
hybrid Python/C++ accelerator simulation package capable of
dealing with the entire spectrum of beam dynamics simulations.
We describe the motivations for the hybrid language design and
discuss the issues that arise in the implementation. We also
describe the most novel feature of our code, a hybrid C++/Python
object serialization system, in detail. The same techniques are of
general use in any domain by providing data and computationally
intensive C++ frameworks with the advanced programming and
user-friendly features of Python.

I. INTRODUCTION

Modern particle accelerators are complex devices, often
containing thousands or even tens of thousands of components,
propagating beams of typically O(10*2713) particles, usually
divided into well-separated bunches. A detailed understanding
of the dynamics of beams in these machines inevitably requires
computer simulations. Fortunately, in most cases, the physics
of beams at leading order is determined by the interactions
between individual beam particles and the electromagnetic
fields generated by the accelerator components. The simulation
of the dynamics of independent particles in particle accelera-
tors is a well-understood problem and is tractable on desktop
computers, even for the most complicated accelerators.

In order perform simulations beyond leading order, how-
ever, collective effects involving the beam particles must be
included. The most important collective effects include space
charge, the electrostatic repulsion between the particles in a
bunch, and wake fields, the effects of fields induced in the
beam pipe by the leading particles on the trailing particles.
These collective effects are not tractable by brute force calcu-
lations; the large number of particles and even larger number of
pairwise interactions push the problem well beyond the reach
of today’s, or even tomorrow’s, supercomputers. Instead, most
accelerator simulations of collective effects employ particle-
in-cell (PIC) methods in order to reduce the problem to the
simulation of a reasonable number of macroparticles combined
with field solves on finite grids.

II. SYNERGIA

Synergia [1] is a hybrid Python/C++ package for accel-
erator simulations utilizing PIC methods. The current version

(2.1), which we describe here, is the evolution of the original
Synergia [2], a Fortran90/C++ program with a Python user in-
terface. It combines independent-particle and collective effects
through the split-operator technique. When the Hamiltonian
for a system can be split into independent (7) and collective
(¢) components,

H=H: +He, ey
The split-operator approximation for the time step evolution
operator, M ¢,;; is given by

M (1) = M, (t> M. (t) M; (;) +0 (), @

2
where M, and M are the evolution operators corresponding
to H. and H,;, respectively. Synergia abstracts this technique
by defining each simulation as a series of steps, each of which
is defined by an ordered set of operators. A set of steps through
an entire accelerator is called a turn. Typical simulations of
circular accelerators may consists of thousands to a hundred
thousand turns. Real accelerator cycles can be millions of
turns. Accelerator operations often require changing the ac-
celerator parameters such as altering magnet settings and RF
phase shifts, possibly in response to beam conditions. Synergia
can also handle linear accelerators, through which the beam
only passes once. Then the (poorly named, in this context)
number of turns is simply one.

A Synergia simulation consists of propagating a single
bunch or train of bunches through a given number of turns.
Along the way, various user-selected (and/or user-defined)
diagnostics can be performed on the bunch(es) to monitor
the state of the beam as it propagates through the machine.
The simulation parameters are defined by a brief Python or
C++ program written by the end user. The end-user program
may use only existing Synergia classes, or may include custom
extensions to those classes. The entire state of the simulation,
including end-user extensions, may be checkpointed and/or
resumed at any point. This checkpointing mechanism allows
both for recovery from hardware failures and the chaining
of multiple jobs in time-limited queues to complete one long
simulation.

Synergia consists of a core set of C++ classes which are
exposed to Python via Boost.Python [3] as described later
in this paper. The independent-particle dynamics are handled
by the CHEF [4] C++ libraries. Both Synergia and CHEF
were developed at Fermilab. Synergia also depends on a
variety of packages representing the current state-of-the-art in
scientific computing. Fig. 1 displays the full set of Synergia
dependencies.

synergia2

T8

N

Fig. 1.
computing and/or Python packages.

1e4
1e3

1e2

Time to Solution (s)

1el
Propagate Total (actual)
Propagate Total (ideal)
Collective Ops.
Independent Ops.
Charge Deposition

1e0

16 32 64 128 256 512 1k 2k 4k 8k 16k

Number of Cores

Fig. 2. Strong scaling of a single-bunch space charge simulation on ALCF’s
Mira, a Blue Gene/Q machine. The space charge calculation uses a 32 x 32 X
1024 grid and 100M macroparticles. The red curve is the total time; other
curves detail the scaling of the most computationally demanding portions of
the calculation.

The Synergia design includes parallelism at its core. Simple
Synergia simulations can be run on a desktop machine with
a single core, but one can easily utilize a range of parallel
resources from ranging from multi-core desktops to 100, 0004
core supercomputers. The central model is based on MPI,
but extensions including hybrid MPI/OpenMP and GPU-based
models exist in preliminary form. Figs. 2 and 3 demonstrate
the scalability of the code. We find excellent strong scaling
behavior over a range of a little less than a thousand. We also
obtain excellent weak scaling in the number of macroparticles
used (not shown) and number of bunches (Fig. 3).

Dependencies of Synergia. CHEF (chef-libs) is a set of independent-particle accelerator libraries. The other nodes consist of widely-used

pytables

scientific

bunches
64 128 256 512 1024
30 T T T T T
o — 2
25F 1
20 1
o
o 15} 1
£
=
10p 1
5F]
=—a ideal
e—e actual
8192 16384 32768 65536 131072

BG/P (Intrepid) cores

Fig. 3. Weak scaling of a multiple-bunch space charge simulation on ALCF’s
Intrepid, a Blue Gene/P machine. The space charge calculation uses a 32 X
32 x 1024 grid and 100M macroparticles per bunch; the largest simulation
has a total of over 13B macroparticles.

A. Why Python?

Working particle accelerators have many operational pa-
rameters. Some of these are varied from run to run, while oth-
ers may be adjusted by pre-determined algorithms or feedback
loops. Realistic accelerator simulations will therefore require
a very complicated description of simulation parameters. Syn-
ergia’s use of Python as a driver gives the end user access to
a full programming language to use in simulation description.
In older accelerator simulation packages it was most common
to either have a very limited declarative description of a simu-
lation, or, in more advanced packages, an ad hoc language to
enable limited programability. Using Python allows Synergia
vastly greater flexibility while eliminating the development

3| class Ramp_actions (Propagate_actions ,

from synergia import Propagate_actions, Pickle_helper
Pickle_helper):
__init__(self, ramp_turns, turns_to_extract,
final_k1 , final_k2I, rfko_kicker):
Propagate_actions . __init__(self)
Pickle_helper. __init__(self , ramp_turns,
initial_k1 , final_kI ,

def initial_k1 ,

turns_to_extract ,
final_k21, rfko_kicker)
def turn_end_action(self , bunch ,
synergia_elements = \
stepper.get_lattice_simulator (). get_lattice ().get_elements ()

stepper , turn_num) :

if turn_num <= self.ramp_turns:

index = 0
for element in synergia_elements:
if element.get_type() == "multipole”:
new_k21 = self.final_k2l[index]*turn_num / \

self.ramp_turns

element.set_double_attribute ("k21”7, new_k2I)
index += 1
if turn_num == 1:
old_intensity = bunch.get_total_num ()
n0 = old_intensity
avg_rate = n0 / float(self.turns_to_extract — self.ramp_turns)

Fig. 4. User-defined propagate actions class in Python.

effort needed to create yet another language.

The usefulness of Python in Synergia extends beyond static
description. Many of the Synergia classes are designed to be
extended in either C++ or Python. By doing so, the end-
user can create dynamic simulations including time-varying
machine parameters and active feedback. Such simulations
can very closely model the actual behavior of the machine,
allowing highly realistic simulations.

A real-world example of the power of Python in Synergia
simulations can be seen in the Synergia model of the reso-
nant extraction scheme for the proposed Mu2e experiment at
Fermilab. The resonant extraction scheme involves a circuit
that ramps non-linear magnets to create a moving resonance
that progressively captures portions of the beam, causing it
to be extracted at a (roughly) constant rate. A second circuit
monitors the extraction rate and uses that information to drive
a system known as RF knockout (RFKO) to enhance the uni-
formity of the rate. In the Synergia simulation of the resonant
extraction process, a Python class extending the Synergia C++
class Propagate_actions provides the logic mimicking
the action of both circuits. Portions of the class are shown in
Fig. 4.

Another use for Propagate_actions is active feed-
back. A simple model of an accelerator damping system can
be constructed as follows: measure the position of the bunch
centroid using a beam position monitor (BPM) installed a
given location. At a given point downstream, shift the particles
toward the center of the beam pipe by an amount proportional
to the offset at the BPM. This model can be implemented in
Synergia using the Damper_actions class in Fig. 5.

There are many other ways in which end-users can extend
Synergia through the Python interface. For example, Synergia
already contains a rich set of diagnostics classes for measuring
beam characteristics during the course of a simulation, but
the possible set of such measurements is enormous. These
classes can easily be extended in Python. Furthermore, the
set of possibly interesting points in the simulation to perform
such measurements is also enormous. A class analogous to
Propagate_actions, Diagnostic_actions, can be
extended to allow for arbitrary logic in measurements.

from synergia import Propagate_actions ,
bunch. Core_diagnostics

Pickle_helper ,

class Damper_actions (Propagate_actions , Pickle_helper):
def __init__(self, bpm_location, damper_location):
Propagate_actions init__(self)

Pickle_helper.__init__(self, bpm_location, damper_location)
self .bpm_location = bpm_location
self.damper_location = damper_location

self .bunchx = 0.0

def step_end_action(self, stepper, step, bunch, turn_num, step_num):
Measure the bunch position at the pickup (BPM) location
if step_num == self.bpm_location:
self.bunchx = Core_diagnostics().calculate_mean (bunch)[0]

Shift the bunch position at the damper location
elif step_num == self.damper_location:
kick x momentum to restore position

bunch. get_local_particles () [:, 1] += —gainxbunchx/self.betax

Fig. 5. Synergia implementation of a simple damper module.

B. Why Not Python?

Even though the advantages of Python-driven simulations
are many, there are also drawbacks. The difficulties we have
encountered in working with a Python/C++ package are, in
order of importance, porting problems, complex debugging,
difficulty in using external tools such as profilers, and the extra
work that goes into maintaining the C++-Python interface.

Portability has been, and continues to be our number one
problem. The Synergia code itself, which is written in very
standard-compliant C++, is almost never a portability problem.
Our portability problems really split into three different issues:
availability of shared libraries, Python, and other dependent
packages. On modern mainstream Unix-like systems, none
of these issues are particularly troublesome. In Fedora 19,
for example, all of our dependent packages (except, naturally
CHEF) are available as part of the operating system. On
supercomputing and other cutting-edge architectures such as
Intel MIC, however, the story is much more complicated.
Supercomputing operating systems as recent as Blue Gene/L
and Cray Xt 4 did not support shared libraries at all (or in
a way useful to us.) Even though the subsequent releases
of those systems, Blue Gene/P and Cray Xt 5, do provide
support for shared libraries, it has been our experience on the
systems we have used that it is common to find important
system libraries such as libz available in only static versions.
Once the shared library problem has been solved, there is the
problem of getting a version of Python that is fully compat-
ible with dynamically loaded libraries. The problem is made
much more complicated by the fact that most cutting-edge
systems require cross-compiling and the Python build system
is incompatible with cross-compiling as shipped. Having dealt
with the shared library and Python issues, we still have to deal
with building the Python-related dependent packages. Out of
the 14 dependent packages in shown in Fig. 1, five are related
to Python. Fortunately, these packages are usually the least of
our portability problems, but some work is still required to get
them installed.

Debugging and external tool difficulties arise after porta-
bility has been dealt with. In general, there exist tools that can
do debugging and profiling in mixed language environments,
but they are not necessarily the best options in every case, nor
are they available everywhere. It is always simplest to perform
debugging and profiling operations in a pure-C++ environment.

C. Evolution of the Use of Python in Synergia

The current version of Synergia, 2.1, is the third major
step in the evolution of its design. In the original version,
the simulation itself was entirely contained in a hybrid Fortran
90/C++ application. The main loop came from a legacy Fortran
90 code that we augmented to call the (C++) CHEEF libraries
for independent-particle physics. This design arose more out of
necessity than choice — it was too difficult to split the Fortran
90 code into components to be called by anything else. The
user interface was Python based, but the entire function of
the Python portion of the code was to generate the human-
unfriendly input file format for the Fortran 90 code, which
consisted of nothing but floating point numbers. This solution
was usable, but highly inflexible; we were limited by design
of the

In version 2 of Synergia, we broke away from the Fortran
90 main loop. For the first time, the code was driven by Python,
with calls to small pieces written in C++ and even some
chunks laboriously split off the Fortran 90 code. Eventually,
we replaced all of the functionality that was being provided
in Fortran 90 with our own much more flexible C++ code.
Nonetheless, the overall design was a complex mixture of
Python and C++ at multiple levels of granularity. It was an
improvement over the version which also included Fortran 90,
but it still left a great deal to be desired in terms of robust
design.

In version 2.1 of Synergia, we have finally achieved a
robust class structure. Because of (potential) difficulties with
Python/C++ applications, we have refactored the code to be a
optionally C++-only. By creating a pure-C++ class structure,
we now allow the option to write pure-C++ Synergia simu-
lations. In general use, we find the Python-driven approach
to be superior. However, in cases where the Python-related
difficulties described above arise, we are now able to proceed
in the simpler mono-language mode. As a side-effect, we have
also found that creating a single-language class structure leads
to a cleaner design. However, this approach puts demands on
the Python-C++ interface, as we describe later in this work.

III. C++ CORE CLASSES

The Synergia C++ class structure mimics the physical
system being simulated. The simulation is a bunch (or bunches)
of particles propagating through an accelerator lattice. The core
Synergia classes are Bunch, which holds a distributed set of
macroparticles and Lattice, which hold an abstract descrip-
tion of the series of elements that make up the accelerator
lattice. The Propagator class applies a series of Steps
composed of Operators, while periodically executing vari-
ous Actions, including the application of Diagnostics.
See Fig. 6.

Because we have designed Synergia so that fully-C++
simulations are possible in addition to Python-driven ones,
for reasons described in Subsection II-B, it is logical to have
a natural fully-C++ interface. The implementation therefore
makes full use of appropriate C++ features, including classes,
inheritance, overloading, templates and STL containers. It also
includes extensive use of the Boost libraries [5]. The list of
libraries used includes Boost.MultiArray for multidimensional
arrays, shared_ptr for memory management, Boost.Filesystem

for filesystem operations, etc. The Zest library is used for unit
tests. The use of two more Boost libraries, Serialization and
Boost.Python are described in the following subsection and
section, respectively.

A. Serialization

Checkpointing is an important feature for large-scale sim-
ulation applications. It allows for recovery from hardware fail-
ures. It also allows for simulations whose duration exceeds the
time limits frequently imposed by batch queue systems. The
long-duration problem is particularly important in accelerator
simulations because real accelerators propagate beams for very
long times — times that correspond to simulations that would
take months or longer. Although month-long accelerator jobs
are rare, simulations that exceed the typical 12 or 24 hour
limits imposed by many batch systems are common.

If Synergia was a static application, checkpointing might be
implemented by some sort of scheme that re-does initialization,
then skips to the place where the last job left off. The fact
that Synergia is really a library that end-users use to create
their own applications makes that sort of approach impractical.
Instead, Synergia includes an object serialization scheme that
allows the state of each of its object to be written to and/or
restored from disk.

The Synergia serialization implementation utilizes the
Boost Serialization library, which requires each class to have
a templated serialize method. In certain situations, sepa-
rate save and load methods are substituted for the single
serialize method. Each class must send/get its state,
usually just the values of its member values, to/from the
Archive object, which is a template parameter. Both (ef-
ficient) binary and (large and slow, but human readable) XML
archive types are available. Synergia allows the user to decide
at runtime which archive format is to be used. The Serialization
library takes care of things like pointers and STL containers
transparently. The flexible nature of this serialization scheme
allows arbitrary end-user programs to save and restore their
states transparently. The only burden on the end-user is the
requirement to add a serialization method to new C++ classes
extending the Synergia classes. Python classes that extend
the Synergia classes can be handled automatically; see the
following Section.

IV. PYTHON-C++ INTERFACE

We considered many different Python-C++ binding gen-
erators for Synergia. Some were clearly intended for specific
projects and it wasn’t clear that they would be supported (or
even supportable) on some of the relatively exotic architectures
on which we planned to (and do) run Synergia. Many of
the others were of the “C/C++” variety, meaning that they
were really designed for C code with a few additional C++
features. Since we have a C++ class interface that includes
many of the non-trivial features of C++, the “C/C++” binding
generators were deemed insufficient for our needs. In the
end we chose Boost.Python because it allows for the most
transparent translation of C++ interfaces and data structures to
Python with minimal portability issues. Another advantage for
us of this choice was that we were already using several Boost
libraries, so no additional dependency was added to Synergia.

I F’rapagatar' _ applies |

s
consisting of RO | collective |

using Ve ‘I_‘ LattiCE J

applied to - 'I Bunch |

-y . .| Diagnostics |
Y nguding S Y

% ramping, ete.

Fig. 6. Overview of Synergia structure.

template<class Archive>
void
Chef_lattice_section :: serialize (Archive & ar, const unsigned int version)

ar & BOOST_SERIALIZATION_NVP(begin_index)

ar & BOOST_SERIALIZATION_NVP(end_index) :

ar & BOOST_SERIALIZATION_NVP(chef_lattice_sptr):

Fig. 7. Example of a class serialize method. The
BOOST_SERIALIZATION_NVP macro allows variables to been written
in XML archives as name-value pairs, enhancing readability of the archive
itself.

Boost.Python has many features that make it easy to expose
our C++ interfaces to Python:

e Classes can be wrapped straightforwardly, preserving
inheritance relations. Python classes can inherit from
C++ classes.

e C++ classes can call inherited methods in Python
classes through callbacks.

e Other structures can also be wrapped in a straight-
forward manner, including enums, static data member
and constants.

e Overloaded C++ signatures can be translated to
Python with a minimum of effort.

e (Classes and shared pointers to classes can be inter-
changed transparently at the Python level.

One C++ construct which is hard to translate to Python
are functions which take mutable atomic types as arguments.
While we generally avoid such constructs in our C++ code
as a matter of style, there are a few occasions where mutable
atomic types are the simplest interface. Boost.Python allows us
to write a custom wrapper for cases like these. We invariably
map them to Python functions which return multiple values.

Another feature of Boost.Python we use extensively is
container conversion. While wrapping our application-specific
classes and all of their methods is a logical choice, for the basic
STL containers std: :vector and std::1list it is more
natural to convert to the native Python 1ist or tuple types.
Boost.MultiArray types are naturally converted to Python
Numpy arrays — this can be accomplished without copying the
underlying data. An excellent example of this interface can be
seen in the last line of Fig. 5, where the particle coordinate
data, which is stored in a C++ Boost.MultiArray, is simply
modified in Python through the Numpy interface. In the end
Boost.Python allows our C++ code to look like C++ code and
our Python code to look like Python code.

!/usr/bin/env synergia
import synergia

from synergia.foundation import Four_momentum, Reference_particle ,
synergia.lattice import Mad8_reader, Lattice
synergia.bunch import Bunch, Diagnostics_basic
synergia.simulation import Independent_stepper_elements ,
Propagator

from fodo_options import opts

from mpi4py import MPI

pconstants
from
from

from Bunch_simulator , \

import sys
We wrap the entire simulation in a try..except block in order to allow
for graceful failures under MPI.
try:
Read the lattice named "fodo” from the Mad8 file “fodo.lat”
lattice = Mad8_reader (). get_lattice ("fodo”, "fodo.lat™)
Define the simulation steps
stepper = Independent_stepper_elements(lattice , opts.map_order,
opts.steps_per_element)
Define the parameters for the bunch
bunch = synergia.optics.generate_matched_bunch_transverse (

stepper.get_lattice_simulator (),

opts.x_emit, opts.y_emit, opts.z_std, opts.dpop,
opts.real_particles , opts.macro_particles ,
seed=opts.seed)

Apply basic diagnostics every step

diagnostics = Diagnostics_basic(“diagnostics.h5")
bunch_simulator = Bunch_simulator(bunch)
bunch_simulator.add_per_step (diagnostics)

Perform the simulation

propagator = Propagator(stepper)

propagator.propagate (bunch_simulator ,
opts.verbosity)

opts.turns , opts.max_turns,

except Exception, e:
sys.stderr.write(str(e) + '\n")
MPI.COMM_WORLD. Abort (777)

Fig. 8. A simple Synergia simulation of a focusing-defocusing (FODO)
accelerator cell.

A. A Simple Synergia Python Simulation

In Fig. 8 we demonstrate a complete Synergia simulation.

B. MPI and the Python/C++ Interface

Notice that fodo example, Fig. 8, only contains two ex-
plicit references to MPI: The mpi4py module is imported
and MPI.COMM_WORLD.Abort is called if an exception is
caught. The former has the implicit effect of properly calling
MPI_TInit and MPI_Finalize at appropriate times. The
latter is important for a clean exit in cases where (C++ and/or
Python) exceptions are thrown in a subset of processes. Most
end-user usage will not require any other explicit references to
MPI. The C++ code manages MPI communicators through a
thin wrapper class, Commxx, which handles creation, destruc-
tion, and serialization of communicators. Commxx contains
simple member to access the rank and size of a communicator,
as well as access to the underlying raw MPI object. The Python
interface to Commxx is handled through Boost.Python just like
any other Synergia C++ class.

class Pickle_helper:

__getstate_manages_dict__ = 1

def __init__(self, sargs):
self.args = args

def __getinitargs__(self):
return self.args

def __getstate__(self):
return self.__dict__

def __setstate__(self, state):
self.__dict__ = state

Fig. 9. The implementation of the Synergia Pickle_helper class.

template<class Archive>
void
save (Archive & ar, const unsigned int version) const

ar &
BOOST_SERIALIZATION_BASE_OBJECT_NVP(Propagate_actions);
std::string pickled_object(
extract<std::string > (
import(”cPickle”) . attr ("dumps”)(self)));
ar & BOOST_SERIALIZATION_NVP(pickled_object):

template<class Archive>
void
load (Archive & ar, const unsigned int version)

ar &

BOOST_SERIALIZATION_BASE_OBJECT_NVP(Propagate_actions);
std::string pickled_object;

ar & BOOST_SERIALIZATION_NVP(pickled_object);

str pickle_str(pickled_object):

self = import(”cPickle”).attr("loads”)(pickle_str):

}
BOOST_SERIALIZATION_SPLIT_MEMBER ()

Fig. 10. The implementation of the load and save methods re-
quired by Boost Serialization in the callback struct used wraps the
Propagate_actions class.

C. Serialization of Python extensions

As we argued in the section on serialization in the C++
code, object serialization is the only general way to implement
checkpointing in a set of libraries like Synergia, as opposed
to a static application where various initializations can re-
run at resume time. Although Synergia provides a transparent
C++ object serialization system, can it also serialize end-user
objects written in Python? Indeed, it can.

The Synergia Python extension serialization mechanism
relies on the built-in Python pickle module. The C++ se-
rialization mechanism calls pickle to serialize the Python
object to a string, then writes that string to the C++ archive.
The pickle module imposes a few requirements on the end-
user Python class. These can be met for most classes by
simply inheriting from the Pickle_helper class provided
by Synergia. The example in Fig. 4 does just that. Figs. 9
and 10 show the Python and C++ implementations of this
mechanism, respectively.

V. CONCLUSION

Synergia is a modern, flexible accelerator simulation frame-
work. The design is parallel at its very core, resulting in scala-
bility to over 100, 000 cores. By using Python as a driver lan-
guage, Synergia allows end-users to create realistic accelerator
simulations of arbitrary complexity. Synergia provides end-
user simulations with checkpointing ability with a minimum of
user intervention. In this paper we described how we arrived at
the current state of the code including some of the challenges
along the way. All of the code described above is available
from the web site in Ref. [1]. The idea of pairing a core
C++ application framework with a Python driver with two way
communication between the two parts can be applied in other

domains where complex and data intensive C++ application
would benefit from a rich and flexible programming language.

ACKNOWLEDGMENT

This work was performed at Fermilab, operated by
Fermi Research Alliance, LLC under Contract No. De-AC02-
07CH11359 with the United States Department of Energy. It
was also supported by the ComPASS project, funded through
the Scientific Discovery through Advanced Computing pro-
gram in the DOE Office of High Energy Physics. We also
used resources of the Argonne Leadership Computing Facility
at Argonne National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under
contract DE-AC02-06CH11357.

REFERENCES

[1] J. Amundson, “Synergia2.1: A framework for accelerator simulations.”
[Online]. Available: https://cdcvs.fnal.gov/redmine/projects/synergia2

[2] J. Amundson, P. Spentzouris, J. Qiang, and R. Ryne, “Synergia: An
accelerator modeling tool with 3-d space charge,” J. Comp. Phys., vol.
211, pp. 229-248, 2006.

[3] “The boost.python c++ library.” [Online]. Available: http://www.boost.
org/doc/libs/1_54_0/libs/python/doc/index.html

[4] L. Michelotti, “C++ objects for beam physics,” in Proceedings of the
14th IEEE Particle Accelerator Conference, 1991.

[S] “The boost c++ libraries.” [Online]. Available: http://www.boost.org/
index.html

