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Abstract—High Performance Computing users traditionally
rely on low-level, compiled language such as C or FORTRAN to
perform compute-intensive tasks. As a consequence, it is a com-
mon situation to have High Performance Computing application
written in a high-level language such as Python, calling native
routines for compute-intensive tasks. To improve development
speed and reduce maintenance costs, using a higher-level language
like Python seems attractive. While it is usually associated with
low performance, several solutions such as Cython, Numba,
Parakeet or Pythran offer to automatically or semi-automatically
turn Python functions into native ones.

One of the key points required to match the performance of
native applications is the ability to write parallel applications.
This paper studies the addition of OpenMP directives, a popular
model to describe parallelism in C/C++/FORTRAN applications,
to Pythran, an automatic compiler from a subset of Python to
C++. It shows that scientific Python applications annotated with
OpenMP directives can be turned by an automatic compiler into
native applications that run within the same order of magnitude
than manually-written ones.

I. INTRODUCTION

Since its birth in December 1989, the Python language [21]
has proved to be useful in various domains, ranging from
system administration to web services, thanks to its dynam-
icity, expressiveness, rich ecosystem and “batteries included”
standard library. It is also widely used in scientific comput-
ing [14], thanks to the numpy module and the SciPy [10]
project which provide a set of scientific and numeric tools,
ranging from linear algebra to ordinary differential equation
solvers or generic algorithms.

It is now heading toward High Performance Computing
(HPC), either as a glue language used to bind several native
libraries together, or to support whole applications in Pure
Python. However, the prohibitive overhead of the language
implied by its interpreted and highly dynamic nature prevents
its usage for the most performance-critical code sections,
where native code is generally used. The SciPy modules partly
overcome this issue through the usage of low-level routines
written in C or Fortran and encapsulated in Python native mod-
ules. Moreover, its core data structure, the multi-dimensional
array [20], has been designed so that the underlying data are
available to both native modules and the Python interpreter
without conversion cost. Yet when a new function not already
part of an existing module is required, one has to write it in
C or FORTRAN.

The hybrid approach, where an application contains a mix
of interpreted and native code, is getting widespread in the
Python landscape. It is also the recommended approach to
write applications that make use of fine grain parallelism, as
Python parallelism support is only suitable for coarse-grain
parallelism. To allow the user to write native functions without
having to write the boilerplate glue code that turns Python
object into native structures back and forth, the SciPy package
provides the weave module. It makes it possible to bundle C
code snippets into Python code. They are then compiled and
loaded at runtime. Other project like PyCuda or PyOpenCL
offers the same convenience to target hardware accelerators.

This paper presents the addition of OpenMP, a popular
standard to turn sequential C, C++ and FORTRAN applica-
tion into parallel applications, to the Pythran [9] compiler, a
compiler that turns Python modules into C++ meta-programs.
Section II gives an overview of existing approaches to compile
Python functions or modules and shows a critical lack of paral-
lelism support. It also emphasises on the need for a backward-
compatible approach. Section III presents the Pythran compiler
and the underlying runtime library. Section IV studies the
validity of using OpenMP directives within the Python lan-
guage in order to add fine-grain parallelism support to Python
in the context of Pythran. Finally, the Pythran compiler is
benchmarked on several scientific kernels and compared to
Cython, Numba and Parakeet in Section V.

II. PARALLEL COMPUTATIONS IN PYTHON

In the many-cores era, it is mandatory to exhibit parallelism
to balance the performance limitations of scripting languages,
as described in [7] in the context of the MATLAB language,
or in [13] in the context of the R language. In the context of
Python, most approaches have focused on fork-based paral-
lelism.

A. Python and Parallelism

Parallel computations are supported by the Python standard
library through the multiprocessing module. It spawns
several interpreters that communicate through Inter Process
Communication (IPC), using Python built-in object serial-
ization. This approach is only viable for compute-intensive
independent tasks, since the communication and synchroniza-
tion overheads are much greater than a light-weight threaded
approach.



The standard threading module also makes it possible
to start several light-weight threads within the same interpreter,
but this lower-level approach is not applicable to HPC, because
of a specificity of CPython, the Global Interpreter Lock [23].1
This lock ensures that only one thread is active at a time in
the interpreter. While it enables the possibility of cooperative
threads, say for a GUI, it does not take advantage of multiple
cores. However, there are two notable exceptions: the GIL is
released on I/O, and the GIL does not prevent the use of threads
inside native modules, where the user has full control.

To illustrate the limitations of these two approaches, we
used the CPU-bound Buffon’s needle algorithm to estimate
the value of π. A sequential version parallelized using the
two approaches is illustrated in Listing 1. When comparing
their respective execution time using 4 cores, it appears that
the version that uses the threading module runs ×1.46
the execution time of the sequential version. GIL contention
actually increases the execution time. The version that uses
multiprocessing provides a speedup of 3 over the se-
quential version while a speedup of 4 would be expected for
this kind of application.

Another widely used solution is the module
IPython.parallel, which supports many different
styles of parallelism including: single program, multiple
data (SPMD) parallelism, multiple program, multiple data
(MPMD) parallelism, message passing using MPI, task
farming, and data parallel.

There have also been several approaches to replace the
GIL by Transactional Memories [17], [19] but none of them
made its way to the mainstream interpreters. As a consequence,
Python developers need to write multi-threaded native modules
in order to fully benefit from multiple cores. This leads to a
kind of computations referred as hybrid computations.

B. Hybrid Computations

In the context of interpreted languages, [12] defines a
computation as hybrid when part of the code is interpreted,
and part of it is executed natively.

It is now common for scripting language to have C bind-
ings. To take advantage of compiled code, and to overcome
the GIL limitations, Python developers have to write parallel
C/C++ functions and the associated boilerplate based on the
Python C API [22]. Tools have been developed to relieve the
user from this cumbersome task, notably SWIG [2] that relies
on an interface specification supplied by the programmer to
generate the glue, or boost::python [1] that relies on C++
templates and type overloading facilities to guide translation.

An opposite approach consists in using the host language
—herein Python— to describe both parts of the system, i.e.
the hybrid and the native. An automated tool performs the
translation to native code of a specific part of the applica-
tion, generally the compute-intensive one where parallelism
has been expressed in some ways. Therefore, developers not
familiar with lower level languages or not eager to invest
the additional development time can still benefit from a fair
performance boost. This approach is the subject of many

1Other Python interpreters, such as IronPython or Jython, do not have a
GIL.

def buffon(darts, _ = 0):
hits = 0
f o r i in xrange (0, darts):
x, y = random(), random()
dist = sqrt(pow(x, 2) + pow(y, 2))
i f dist <= 1.0:
hits += 1.0

# hits / throws = 1/4 Pi
pi = 4 * (hits / darts)
re turn pi

from threading import Thread
from multiprocessing import Queue
def threaded_buffon(d):

def work(darts, queue):
queue.put(buffon(darts))

n = 4
q = Queue()
threads = [
Thread(target=work, args=(d//n, q)),
Thread(target=work, args=(d//n, q)),
Thread(target=work, args=(d//n, q)),
Thread(target=work, args=(d//n, q)),

]
map(Thread.start, threads)
map(Thread.join, threads)
re turn sum(q.get() f o r _ in threads)/n

import functools
from multiprocessing import Pool
def multi_buffon(darts):
n = 4
p = Pool(n)
re turn sum(p.map(functools.partial(buffon,darts/n), range(n)))/n

Listing 1. Implementation of sequential and parallel version of the Buffon
algorithm in Python.

studies that can be classified according to their compatibility
with the host language.

1) Backward-Incompatible Approaches: A constraining
(from the performance point of view) aspect of the Python
language is its type system. It implies that each method call is
resolved dynamically, even a simple add operation. It comes at
no surprise that many approaches restrain the Python language
to add a static typing overlay. Also, only two types of integers
(64-bits integers and multi-precision integers) and one type of
floating point type (double-precision floats) are available in
Python, so using a type with the appropriate size may lead to
significant performance boost.

Cython [3] is an hybrid Python/C dialect. It extends the
Python syntax with typing information, calls to native func-
tions from third party libraries, and a limited set of parallelism
constructs, such as the possibility to define parallel loops,
but no task parallelism. When possible, it unboxes Python
variables to improve performance. Without type annotations,
the performance improvement is not terrific, but given enough
type annotation, Cython can generates code that runs as fast as
its C equivalent, while maintaining a syntax close to Python.



PLW [12] and Scipy.weave both propose another ap-
proach that directly mixes Python with C, using raw strings
to hold the C code. PLW also supports parallel directives that
are limited to parallel for loops. PyCUDA and PyOpenCL [11]
also target accelerators by mixing Python with kernels embed-
ded as raw strings containing accelerator code.

The main drawback of these approaches is that they re-
quire to modify in a backward-incompatible way the original
code. They require to learn a new dialect, and the long-
term preservation of this investment is not ensured. Moreover,
some of these approaches have no fallback if the code were
to be deployed in an environment where the parallelizing
tool/module is not available. For instance, once a code has
been ported to PyCUDA and transformed into CUDA code
embedded in Python strings, there is no way back and the
developer has to maintain two versions of the algorithm.

2) Backward-Compatible Approaches: Most backward-
compatible approaches also require to modify the input pro-
gram. They do not extend the Python language, but restrict it.
As a consequence, they remain compatible with the original
language and do not suffer from the drawbacks of the previous
approaches. They also benefit from existing tools associated to
the language.

Copperhead [6] is a functional, data parallel language
embedded in Python. It uses n-uplets, NumPy arrays and lists
as its core data structure and prohibits usage of many control-
flow operators such as loops, enforcing the use of the map,
filter or reduce intrinsics to exhibit parallelism. But it
can be efficiently compiled to either CUDA or C++ with calls
to the Thrust2 library. Python decorators are used to identify
hot-spots that are JIT-compiled to native code.

The numba 3 compiler uses additional type information to
generate sequential LLVM bytecode. Parakeet [18] follows an
approach similar to numba, that is Python to LLVM bytecode
translation, but limits its scope to the numpy package, only
supporting a small subset of the Python language. Additionally,
it supports implicit parallelism using an implicit mapping
between numpy functions and a set of parallel primitives
including maps scans and reduces. These two approaches
use Just-In-Time(JIT) compilation and do not suffer from
backward-incompatibility issues. When meeting an unsup-
ported construct, numba falls back to Python C-API calls,
while parakeet raises an exception.

Tools such as PyPy [5], a Python interpreter with a tracing
JIT, or Shed Skin [8], a Python to C++ compiler are also viable
ways to enhance Python performance. However Shed Skin
does not provide support for fine-grained parallelism beyond
what the standard library proposes. PyPy is heading toward
STM for parallelism support.

To be completely backward compatible, it has to be possi-
ble to run the input code in an environment that is not aware
of the existence of the parallelizing solution. This principle
is not respected by parallel libraries, but code annotations
partially satisfy it. This is where parallel annotations shine:
the original code remains mostly compatible with a compiler

2cf. http://thrust.github.com/
3cf. https://github.com/numba/numba
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Fig. 1. Pythran compiler workflow.

that is not aware of the annotations, while taking the annotation
into account turns the sequential code into parallel code.

This article proposes to combine OpenMP [15] parallel
annotations with the Python subset supported by the Pythran
compiler to make it possible to write fine-grain parallel ap-
plications in Python, while being fully backward compatible
with both the Python language and the sequential algorithm.
It implies that:

1) any Pythran code can be run (sequentially), with no
module dependency or code change, by any Python
interpreter;

2) parallelism is explicit and incrementally added to the
original code through directives.

III. STATIC TRANSLATION OF PYTHON PROGRAMS

Pythran [9] is a subset of Python designed for scientific
computing. It is implicitly statically typed and supports most
Python constructs except those that involve introspection (e.g.
getattr) or runtime compilation (e.g. eval). A few stan-
dard modules are supported in addition to the core language
(e.g. math, random). The numpy module is currently only
partially supported. User classes are not supported. The asso-
ciated compiler turns Pythran code, possibly annotated with
OpenMP and a few function type annotations, into C++ code.

Figure 1 summarizes its processing: type inference helps
removing most dynamic behavior, and is combined with
a high-level runtime library —Pythonic++— to allow a
one-to-one mapping between Python and C++ constructs.
Pythonic++ is a template library, i.e. it consists exclusively
of a set of headers. Therefore the generated C++ file is easily
distributable and does not depend on Pythran. One could even
preprocess this C++ file to avoid the need of distributing along
the Pythonic++ headers.

The purpose of this section is not to dig into the internals
of the compiler, but rather to focus on the impact of the
parallelism layer, especially on the runtime library.



A. Runtime Library Support

Pythran runtime library is based on the C++11 standard
library which, unlike its C++03 counterpart, is thread-safe. It
implies that no data dependencies are added to the original
code.

A critical point of the design of the pythonic++ runtime
library is memory management, the very same aspect that led
to the use of a GIL in CPython. Memory management is
implemented in Shed Skin through the general-purpose Boehm
garbage collector [4], and Cython forbids usage of Python-
managed objects inside parallel regions, thus making memory
management explicit for these parts.

Pythran handles the problem by refusing recursive types,
which makes it possible to solely rely on reference counting
for memory management. It can be implemented through the
thread-safe shared pointer mechanism provided by the C++11
standard library.

Using shared references simplifies memory management,
but the counterpart is an extra atomic operation for each
copy. As it limits parallelism, reducing the number of copies
becomes an important goal. The move semantic introduced
in C++11 avoids a few copies when working on temporary
objects, but argument passing still implies copies. To avoid
a reference increment, one can pass parameters by reference.
Using an inter-procedural memory effect analysis not presented
in the paper, Pythran determines for each argument whether it
has to be passed using reference or const reference to prevent
this overhead.

B. Directive Oblivious Translation

During Python to C++ translation, Pythran adopts a blind
strategy: it does not understand the semantics of the anno-
tations. Instead, it just splits each annotation into a context-
sensitive part —the variable names— and a context-insensitive
part —the clauses—, and attaches them to the proper construct
in the Abstract Syntax tree (AST).

The Pythran compiler ensures a bijective translation be-
tween Python constructs and generated C++ constructs so that
the OpenMP directive is regenerated on the proper construct.
The same approach is used at the expression level, to be
compatible with the if clause.

At the AST level, it means that the Python AST is first
reduced to a tree where all nodes not available in C++ are
transformed into a compatible representation. For instance, list
comprehension expressions are turned into function calls or
tuple unpacking is turned in multiple assignments enclosed in a
dummy if. During this transformation process, an expression
is always transformed into a single expression and a statement
is always transformed into a single statement. Then this AST
is converted into a C++ AST meant to be pretty-printed.

C. Transfer Costs

When passing containers from Python to C back and forth,
a copy of the whole container is made to turn the type agnostic,
non-contiguous Python data into dense typed ones. This extra
copy implies an extra cost that is not negligible: Passing two
lists of float from Python to C++ requires as much as half the

def pi(nsteps):
sum, step = 0., 1. / nsteps
f o r i in range(nsteps):

x = (i - 0.5) * step
sum += 4. / (1. + x**2)

re turn step * sum
Listing 2. Motivating example: computing π in Python.

double pi(size_t nsteps) {
double sum = 0., step = 1. / nsteps;
#pragma omp parallel for reduction(+:sum)
f o r(size_t i = 0; i < nsteps ; ++i)
{

double x = (i - 0.5) * step;
sum += 4. / (1. + x * x);

}
re turn step * sum;

}

Listing 3. Motivating example: computing π in C with OpenMP.

time to compute the dot product of the same lists directly in
Python. Following Amdahl’s law, this copy overhead greatly
hinders the benefits of parallelization, and is a well known
issue.

The traditional solution is to use a native type that exposes
a Python interface and has a constant translation cost. NumPy’s
ndarray is a typical implementation of this concept and is
the keystone of the Scipy and NumPy packages. Basically, a
NumPy ndarray is a raw C pointer that is exposed at the
Python level. The PEP 3118 defined the API that allows to
share efficiently the embedded data between Python and the
native world without involving any copy. As a tool for scientific
computing, Pythran supports such a structure, implemented as
a class wrapping a raw pointer.

IV. OPENMP SEMANTICAL ADAPTATIONS

OpenMP is a standard API for parallel programming for
Fortran, C and C++. It consists of a set of parallelizing
directives and a few runtime library calls. If OpenMP is not
activated, the directives are ignored, thus enabling incremental
parallelization of the original source code while keeping the
original code structure. The languages targeted by OpenMP
are statically compiled. This section studies the semantical
adaptation required to use the same API for a scripting
language such as Python. Listing 2 introduces a motivating
example through the computation of π, featuring a parallel
reduction. The C equivalent with OpenMP directives is given
in Listing 3 for reference.

A. Directives

OpenMP directives are held by C/C++ #pragma, or by
Fortran comments. Most of them apply to structured blocks in
C/C++ and delimited by comments in Fortran. A few direc-
tives (e.g. threadprivate) are not attached to a specific
instruction.



def pi(nsteps):
sum, step = 0., 1. / nsteps

#omp parallel for reduction(+:sum) private(x)
f o r i in range(nsteps):

x = (i - 0.5) * step
sum += 4. / (1. + x**2)

re turn step * sum
Listing 4. Motivating example: computing π in Python with OpenMP.

While Python has a decorator mechanism4, it only applies
to functions, methods and classes and does not allow to
attach decorations to other statements. PLW [12], uses string
instructions to hold such decorations. As Python does not
have anonymous block,5 one has to create a dummy if 1:
instruction to apply an annotation to a whole block. Pythran
uses comments to hold OpenMP directives, and internally
stores them as string instructions. Alternatively, the syntax if
’my annotation’: is also supported.

Many OpenMP annotations are parametrized by clauses
that list variables, specifying their behavior with respect to
parallel regions, e.g. private, shared, copyin. They
can only refer to variables that have already been declared.
However, there is no variable declaration in Python, and all
variables assigned in a function have the function scope,
called local scope and available through the local() built-
in. As a consequence, all variables that are referenced in
a function are considered when building such variable lists:
there is no concept of variable local to a block. Using the
default(none) clause is possible to ensure no variable
gets forgotten when building such lists.

The reduction(operator: list) directive is used
to characterize some data dependencies when performing a
parallel reduction. The list of supported operators depend
on the input and backend languages: Python has min/max
operators but C/C++ does not. C/C++ have && or || while
Python does not.6 The latest OpenMP specifications [16]
describe a way to declare user-defined reduction but is not
implemented in any compiler yet.

The annotated motivating example is given in Listing 4.
Note that unlike in C, x has to be listed in a private clause.

B. Automatic Scoping Computation

Using function scope for all variables may lead to very
long private clauses. This section describes an algorithm
to automatically limit the scope of a variable declaration so
that it can be automatically marked as private, in a similar
manner to C/C++

The whole idea is to compute the minimal nesting depth of
a variable usage. To do so, a nesting depth is first associated
to each expression. It lexically corresponds to the indentation
level of its instruction, to the notable exception of the iterator

4cf. PEP 318, http://www.python.org/dev/peps/pep-0318/ for a more detail
explanation of Python decorators.

5cf. PEP340, http://www.python.org/dev/peps/pep-0340/ for a discussion
concerning anonymous block support in Python.

6Although similar, the and and or keywords are not boolean operators in
Python.

def pi(nsteps):
sum, step = 0., 1. / nsteps
#omp parallel for reduction(+:sum)
f o r i in range(nsteps):
x = (i - 0.5) * step
sum += 4. / (1. + x**2)

re turn step * sum
Listing 5. Motivating example: computing π in Python with OpenMP and
automatic scoping.

declaration in a for loop, that holds a nesting depth equals to
1 plus the loop declaration indentation level.

Tracking the nesting depth of all variable use, for instance
using def-use chains, makes it possible to build a list of nesting
depths, one per variable reference. Computing the min of this
list yields the scope of the variable.

For instance, in the motivating example, the nsteps
variable is first defined as argument, then read twice, which
gives a def-use chain of {DEF, USE, USE}. The associated
nesting depths is {0, 1, 1} so the variable scope is 0. i is
defined as a loop iterator then used in the loop body, which
gives a chain of {DEF, USE}, with nesting depths of {2, 2}
and a scope of 2. Likewise x has a chain of {DEF, USE},
nesting depths of {2, 2} and a scope of 2, which means it can
be automatically declared local to the loop, thus not needing
to be listed as private.

To be able to list a variable marked as local, for instance in
a lastprivate clause, the directive accesses are taken into
account in the def-use computations. For instance in Listing 4,
the chain for x is {DEF, DEF, USE} and the associated nested
depths are {1, 2, 2} so its scope is 1 and the variable is not
declared local to the loop.

Thanks to this automatic scoping computation, it is possible
to write shorter OpenMP directive, as illustrated in Listing 5.

1) Parallel For and Iterators: The core directive to han-
dle data parallelism is the for directive that distributes the
iteration space of the associated loop among the existing
threads. To be compatible with OpenMP, the loop iteration
space has to be described by a random access iterator with
a total order. Integers used as loop indices in Fortran and
C satisfy this conditions, as well as C++ iterators with the
random_access_tag trait. But a Python iterator only ad-
vances by a step of one until it is exhausted, in which case
it raises an exception: it behaves as a forward iterator. To be
compatible with OpenMP, these iterators has to be turned into
random access iterators.

The extension of Python iterator to random access iterators
is direct for the standard containers: list,7 set or dict.
Other iterators require more care.

Generators, Python objects that behave like iterators,
are commonly used in Python. The simplest one,
xrange(start, stop, step), successively yields
value starting from start to stop by a step of step. It
is easily extended to support random access, but it generally

7Python lists behave as C++ vectors.



#omp parallel for
f o r i, v in enumerate([2, 3, 5, 7, 11]):

p r i n t i, ’:’, v

Listing 6. Parallel loop in Pythran with tuple unpacking.

does not make sense to use a generator as a loop iterator, as
the relation between two random states of the iterator may be
of an arbitrary complexity.

Generator expressions are generators whose content is built
from another iterator. For instance (x*x for x in l)
successively yields the square of each element in l. They
behave like adaptors: they apply a particular expression on
each value of the iterator. It is also the case of the enumerate
builtin, that yields each element of the enumerated iterator
associated with its index. These generators are random access
iterators only if their input iterator is a random iterator itself.

Finally, if the iterator yields a tuple, it is possible to unpack
it inside the for construct, as shown in Listing 6. In that
case all the unpacked variables are considered as iterators,
especially with respect to default privatization rules: in the
given example, i and v are private, and the parallel iteration
is valid because the input of enumerate is a list, which
allows random access iteration.

Pythran’s runtime library is aware of these three kinds of
iterators and supports parallel iteration over random access
iterators and iterators adapting random ones.

C. OpenMP Runtime Library

OpenMP provides a small runtime library that, for instance,
makes it possible to retrieve the active thread id. All the
functions are declared in the <omp.h> header, and have a
default behavior when OpenMP is not activated.

Providing a binding to these libraries in Python as an omp
module does not raise particular problems, as the signature of
these functions only involves integers, except for the mutex
manipulation. In that case an opaque type is used to represent
the native type.

The _OPENMP macro definition is always provided when
OpenMP is activated, and can be used to detect when OpenMP
is not available. Python does not have a preprocessor, but it is
possible to catch the import exception if the omp module is
not found. Listing 7 showcases such a call using an example
converted from the OpenMP validation suite presented in next
section. The code starts a parallel section using the parallel
directive, spawning several threads. Then each started thread
increases the nthreads variable that has unspecified visibil-
ity, thus is shared. A guard protects the incrementation using
the critical directive. Then one of the thread retrieves
the number of active threads in the parallel region through
the get_num_threads function from the omp module. The
function should always return True.

1) Interaction With Pythran Runtime Library: Pythran al-
ready uses OpenMP to parallelize some Python functions.
For instance the sum function from the __builtin__ is
implemented using the OpenMP reduction clause. When
its first argument proves to be a pure function, it can also call

import omp
def omp_get_num_threads():
nthreads, nthreads_lib = 0, -1
#omp parallel
i f 1:
#omp critical
nthreads += 1
#omp single
nthreads_lib = omp.get_num_threads()

re turn nthreads == nthreads_lib

Listing 7. Example of OpenMP API usage from Python.

def omp_parallel_for_if(loop_count):
import omp
using = sum = 0
#omp parallel for if(using == 1)
f o r i in range(loop_count + 1):
num_threads = omp.get_num_threads()
sum += i

known_sum = (loop_count *
(loop_count + 1)) / 2

re turn known_sum == sum and num_threads == 1

Listing 8. Example of Python OpenMP validation test case.

a parallel version of the map function that internally spawns
a parallel region. This leads to a well known situation with
OpenMP, where too many threads may be spawned: nested
parallel regions. OpenMP 4 provides several ways to handle
this situation:

1) Disabling nested parallelism, through the
OMP_NESTED environment variable or the
omp_set_nested routine.

2) Setting the maximum number of active levels,
through the OMP_MAX_ACTIVE_LEVELS
environment variable or the
omp_set_max_active_levels routine.

3) Conditionally activating regions or conditionally set-
ting the number of threads in a parallel region using
the omp_in_parallel

The decision is left to the user, depending on its application
and OpenMP implementation.

D. Validation

A validation suite for OpenMP is proposed in [24] for C
and Fortran. We ported it to Python, and also extended it to
validate the corner cases specific to Python described in this
section. A typical test case is given in Listing 8.

We have used the Pythran tool described in the following
section to turn each Python test function into a C++ function
with the same directives and runtime library calls. Apart
from the threadprivate directive and the collapse(n)
clause, all tests were successful. threadprivate directives
were held by global variables not supported in Pythran yet ;
and the C++ code generated by Pythran does not preserve the
perfect loop nesting required by the collapse clause.



Fig. 2. Comparison of the scaling of π computation function for C and
Python with OpenMP, depending on the number of active threads.
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V. VALIDATION

In addition to the experimental validation done using the
OpenMP validation suite presented in Section IV, the perfor-
mance of parallel module generated by Pythran from Python
module with explicit parallelization using OpenMP directives
has been studied on several situations: first on the motivating
example, then on a synthetic geomatic application. Python and
Cython versions are then compared and finally the effect of
OpenMP directives on Pythran generated code are illustrated
in the context of the Python Benchmarks suite.

The target machine has 8 AMD Opteron 6176 SE cores
and 8 GB of RAM. It is running a Linux kernel 3.10-2-
amd64, x86 64 GNU/Linux. The C++ compiler used is g++
version 4.8.1 and all applications are compiled using the
-Ofast flag. Pythran generated programs are linked with
Boost.Python version 1.54. The Pythran version is extracted
from the sc2013 branch of the git repository https://github.
com/serge-sans-paille/pythran. Python programs are run using
the CPython implementation, version 2.7.5. Cython programs
are generated using version 0.19.1. Numba and Parakeet are
installed from the master branch of their respective reposi-
tories.

A. Motivating Example

To validate the approach proposed in this paper, let first
consider the motivating example. Figure 2 shows how the
C and Python version of the program scale when changing
the number of core used. As a reference, the original Python
code runs 41 times slower than the equivalent C code. As the
program is not memory bound and exhibit trivial parallelism,
the C + OpenMP version scales almost linearly. The Pythran
+ OpenMP version follows the same pattern.

B. Hyantes: a Geomatic Application

To get closer to a realistic example, we have considered
the code of a small geomatics application, Hyantes. Starting
from the C code, we successively parallelized it using OpenMP,
turned it into Python with a Pythran compatible kernel and
parallelized the Python version using the approach described
in this paper. We also measure the number of Source Lines
Of Code (SLOC) of the two versions. Table I summarizes the

TABLE I. COMPARISON OF SEVERAL VERSIONS OF THE HYANTES
PROTOTYPE.

Language Source Lines Of Code (SLOC)
C 102
Python 30
Pythran 30
Pythran+OMP 31

Fig. 3. Comparison of the scaling of the hyantes application for C and Python
with OpenMP, depending on the number of active threads.
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result of this experimentation. It not only exhibit the use of a
high level language for prototyping, but also shows that it is
possible to turn this prototype into reasonably efficient code
through Pythran. It is also possible to prototype the parallel
version while remaining at the Python level.

The Hyantes programs scales relatively well. Figure 3
shows the relative speedup of the application when increasing
the number of OpenMP threads using up to 8 cores.

C. Comparison with Cython

We then compare Pythran with Cython. These approaches
share some similarities: they both generate code written in a
lower level language, with OpenMP directives. However, the
inputs differ as Cython requires more typing information than
Pythran to generate efficient code, and Cython is not backward-
compatible with Python (outside of Pure mode). They translate
explicit fine-grained parallelism through code annotations or
specific Python constructs, respectively.

Pythran exposes the full OpenMP interface to the user,
thus enabling both data and task parallelism, as described in
Section IV. It is not the case in Cython:

• Only loops can be made parallel, using a new prange
generator.

• Reductions and variable privacy are inferred, but it
chokes on reduction on private variables.

• The user is responsible from releasing the GIL inside
parallel regions.

• It is impossible to use a function imported from a
Python module in a parallel region, but it is still
possible to use native C functions.

Listings 9 and 10 illustrate the difference between the two and
illustrates the intrusive behavior of Cython.



from libc.math cimport sqrt
from cython.parallel import parallel, prange
def sum_sqrt(double r):

cde f i n t i
f o r i in prange(10000000, nogil=True):

r += sqrt(i)
re turn r

Listing 9. Cython implementation of a parallel reduction.

#pythran export sum_sqrt(float)
import math
def sum_sqrt(r):

#omp parallel for reduction(+:r)
f o r i in xrange(10000000):

r += math.sqrt(i)
re turn r

Listing 10. Pythran implementation of a parallel reduction.

The performance of the two approaches is shown in
Figure 4. The benchmarked codes are typical mathematical,
image-processing or linear algebra kernels. All these kernels
have been written in Cython and Python —compatible with
Pythran— and annotated through the mechanism of each
language to exhibit parallelism, then compiled into native code.
Their execution time when called from the Python interpreter
is measured through the timeit module. All results are
normalized against Cython sequential execution time. They
show that while handling code at a higher level than Cython,
Pythran achieves comparable results.

The source codes used for these benchmarks are available
on the Pythran repository.8
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Fig. 4. Comparison of Cython and Pythran generated code performance.

D. Python Benchmarks Test Bed

The Python Benchmark test bed (https://github.com/
numfocus/python-benchmarks) is an initiative to gather rel-
evant numerical python benchmarks and compare several im-
plementations and compilers. The original benchmarks are
slightly adapted to match each compiler restriction (e.g. lack
of support for a particular construct), or completely rewritten
in the target’s paradigm (e.g. using PyOpenCL or Theano). We
picked up the targets that did not imply a full rewrite of their

8cf. the sc2013 branch of the git repository.

input: Cython, Numba, Pythran and Parakeet, when available
and supported. Additionally, the original Python code is run.

The best execution time out of five run is shown for each
code version. If the code does not compile with a particular
compiler, the column is left blank. Two code versions are
shown for Pythran: one compiler without the OpenMP flag
set and one with the OpenMP flag set. The code itself is
not modified, only the compilation flag and the directives. A
logarithmic scale is used due to the generally poor performance
of the pure Python version.

Figure 5 shows the execution time of the computation of
the julia fractal. It’s a highly parallel, compute-intensive code.
Pythran and Cython’s version have almost the same execution
time, but activating OpenMP yields an extra ×3.95 speedup
when compared to Pythran alone.
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Fig. 5. Comparison of Various python Compilers on the Julia benchmark

Figure 6 shows the execution time of the computation of a
distance matrix between two random vectors, using a parallel
nested loop. On that example, Pythran slightly outperforms
Cython, parakeet and Numba. Taking into account the OpenMP
annotation that flags the outermost loop as parallel yields an
×4.27 speedup to Pythran.
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Fig. 6. Comparison of Various python Compilers on the pairwise benchmark

Figure 7 shows the execution time of the computation of
the third derivative of the Rosenbrock function for a random
array input, using Numpy’s vector operations. There is no
explicit parallelism in this function but the vector operation



is implicitly parallel. On this example, Cython is on par with
Pythran and slightly faster than Parakeet, but turning OpenMP
on makes the Pythran version run ×1.78 faster than sequential
Pythran.
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Fig. 7. Comparison of Various python Compilers on the rosen der benchmark

Figure 8 shows the execution time of the computation of
one step of the GrowCut algorithm used in image processing.
On this example, Parakeet performs better than Cython and
Pythran and way better than Numba, but parallelizing the
outermost loop with OpenMP gives a ×2.65 speedup to
Pythran that helps it outperform Parakeet.
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Fig. 8. Comparison of Various python Compilers on the Growcut benchmark

It appears that all Python compilers manage to yield
significant speedups over the Python interpreter, each compiler
managing some cases better than others. All the benchmarks
exhibit some level of parallelism that are easy to capture
using OpenMP without changing the original algorithm and
while maintaining backward compatibility with the Python
interpreter. Some even have a degree of implicit parallelism
that makes parallelization fully transparent to the user. Taking
advantage of this parallelism appears to be the key to reach an
additional performance level.

VI. CONCLUSION AND FUTURE WORK

This paper studies the addition of OpenMP annotations to
Pythran. It shows that providing minor semantic adaptations,

these annotations enable Python code to benefit from multi-
cores while retaining backward compatibility and without
worrying about the Global Interpreter Lock.

To achieve this goal, we designed Pythran, a translator
from a subset of the Python language to C++. Pythran turns
regular Python modules annotated with OpenMP directives
and a few type annotations into native parallel module. The
input module remains compatible with the standard interpreter
and the underlying runtime library is compatible with parallel
constructs. While Pythran accepts a limited input, we extend
it progressively and with a great care on its stability. As such,
even if its development is community-based, it is more than a
research prototype and should be usable on real world code.

The approach is compared with Cython, an extension of
the Python language used to generate native module with
an hybrid Python-C syntax that also provides means to ex-
hibit fine grained parallelism. It shows that retaining Python
compatibility does not prevent the achievement of comparable
performances. Comparisons to Numba and Parakeet shows the
benefit of using parallelism on the benchmarks from the Python
Benchmark project.

Future work will focus on the extension of the approach to
OpenMP 4 and the target clause that should allow to target
accelerator like Intel MIC from Python. The simd clause
also brings interesting vectorization capabilities that could be
exposed at the python level. There are also several implicit
vectorization opportunities in Python, especially in the list
comprehension construction, that need to be explored.
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