
pyMIC: A Python Offload Module for the
Intel R© Xeon PhiTM Coprocessor

Michael Klemm
Software and Services Group

Intel Corporation
michael.klemm@intel.com

Jussi Enkovaara
High Performance Computing Support

CSC - IT Center for Science Ltd.
jussi.enkovaara@csc.fi

Abstract—Python has gained a lot of attention by the high
performance computing community as an easy-to-use, elegant
scripting language for rapid prototyping and development of
flexible software. At the same time, there is an ever-growing
need for more compute power to satisfy the demand for higher
accuracy simulation or more detailed modeling. The Intel R©

Xeon PhiTM coprocessor strives to provide additional compute
power for floating-point intensive codes, while maintaining the
programmability of the traditional Intel R© Xeon R© platform. In
this paper, we present a Python module to handle offloads to the
Intel Xeon Phi coprocessor from Python code. It provides an easy-
to-use interface to invoke compute kernels on the coprocessor,
while handling data transfers in a flexible yet performant way.
We discuss how the Python module can be utilized to offload
key kernels in the Python-based open source electronic-structure
simulation software GPAW. Micro-benchmarks show that our so-
lution imposes only marginal overheads on the kernel invocations.
Our performance results for select GPAW kernels show a 2.5 to
6.8 fold performance advantage of offloading over host execution.

I. INTRODUCTION

Python is one of the most commonly used programming
language throughout the computing industry [24]. Python has
proven to be an easy-to-use, elegant scripting language that
allows for rapid prototyping and development of highly flexible
software. In the past years, Python has also gained a lot of
attention by the high performance computing (HPC) commu-
nity. Add-on packages such as Numpy [20] and SciPy [23]
provide efficient implementations of key data structures and
algorithms, and, as implementing extensions with compiled
languages such as C or Fortran is relatively straightforward,
the performance aspects no longer prohibit the use of Python
as an HPC language.

The need for speed in HPC also drives the need for co-
processor hardware that accelerates the compute-intense float-
ing point operations of typical applications. General-purpose
graphics processing units (GPGPUs) and the Intel R© Xeon
PhiTM coprocessor [5] are examples of discrete extension cards
which provide additional compute power on top of traditional
CPUs such as the Intel R© Xeon R© processors.

GPAW is a prominent example of a Python HPC appli-
cation. It is a versatile open source software package for
various electronic structure simulations of nanostructures and
materials science research problems [1], [11]. GPAW is based
on the density-functional theory and time-dependent density-
functional theory, and it offers several options for discretizing

the underlying equations, such as uniform real-space grids,
plane waves, and localized atomic orbital basis. GPAW can be
run on wide variety of HPC systems, and depending on the
input data set, simulations can scale up to tens of thousands of
traditional CPU cores [22]. GPGPUs have already been shown
to be beneficial for speeding up GPAW [14], and the Intel Xeon
Phi coprocessor appears as an appealing alternative for GPU-
based accelerators. GPAW is implemented as a combination
of Python and C, thus the ability to operate on coprocessor in
high-level Python code is considered highly beneficial.

In this paper, we present the design, implementation, and
the performance of a Python module for offloading compute
kernels from a Python program to the Intel Xeon Phi copro-
cessor. The pyMIC module follows Python’s philosophy of
being easy-to-use and being widely applicable. We explicitly
design our module to blend in with the widely used Numpy
package [20] for storing bulk floating-point data. The module
is based on the Intel R© Language Extensions for Offload [7],
but wraps the C/C++ pragmas in a flexible, high-level Python
interface. Our micro-benchmarks prove that our approach is
not only feasible, but also delivers a low-overhead, efficient
offload solution for applications written in Python. We discuss
how pyMIC can be utilized in GPAW, and also present results
for the offload performance of select key kernels in GPAW.

The paper is structured as follows. Section II surveys the
state of the art and related work. Section III briefly introduces
the architecture of the Intel Xeon Phi coprocessor. In Sec-
tion IV, we describe the pyMIC module, its guiding design
principles, and its implementation. Section V shows how the
pyMIC module can be integrated in the physics application
GPAW. Performance results of micro-benchmarks and GPAW
kernels are shown in Section VI. Section VII concludes the
paper.

II. RELATED WORK

To the best of our knowledge, pyMIC is the first offload
infrastructure specifically to target offloading from Python
applications to Intel Xeon Phi coprocessors.

The Intel R© Manycore Platform Stack (MPSS) [3] ships
with a Python version that runs natively on the coprocessor.
Through Python’s networking APIs it is possible to connect to
a Python instance running on the coprocessor and invoke appli-
cation code there. The Pyro4 [9] or RPyC [12] projects provide
remote method invocation of methods by data serialization or

by object proxies, respectively. SCOOP [15] provides a dis-
tributed, task-based programming model. Whereas the above
projects provide a general solution to remote invocation or a
parallel programming model, our pyMIC module specifically
focuses on offloading to local coprocessors and targets efficient
support for Numpy and SciPy.

The pyCUDA and pyOpenCL projects [16] both sup-
port offloading compute-intensive kernels from the host to a
GPGPU. Similarly to our approach, they require the program-
mer to formulate the offloaded algorithms in either CUDA
(pyCUDA) or OpenCL (pyOpenCL). Through the Intel R©

SDK for OpenCLTM Applications [4], pyOpenCL can also
support the Intel Xeon Phi coprocessor. Our pyMIC module
requires that the compute kernel is implemented in C/C++
instead. The Intel R© Parallel Studio XE 2013 for Linux and
Windows contains several programming models to facilitate
offload programming for the Intel Xeon Phi coprocessor. The
Intel R© Language Extensions for Offloading (LEO) [7], [8]
use C/C++ pragmas or Fortran directives, respectively, to tag
code regions for execution on the coprocessor. Intel R© CilkTM

Plus [7] defines special keywords to offload function calls. The
Intel R© Math Kernel Library (MKL) also supports offloading
of kernels as part of the BLAS functions [6]

All these offload models have in common that they cannot
be directly used from the Python language. One needs to
employ the Python C/C++ interface [13] to bridge from Python
to C/C++ and to make use of the C/C++ offload models.
Our Python module utilizes Intel LEO internally to implement
buffer management and offloading, but provides a high-level
Python interface that does not require any boilerplate code.

The Intel R© Coprocessor Offload Infrastructure (COI) [18]
and Heterogeneous Active Messages (HAM) [19] provide a
C/C++ API for offloading. COI is the central interface on
top of which Intel LEO and Intel Cilk Plus implement their
respective offload features. HAM provides an implementation
of active messages [26] to send computation and its accompa-
nying data to a remote coprocessor on the same host or on a
distant host system. HAM provides a low-latency approach to
offloading computation, which makes it interesting for pyMIC
and we are investigating how to provide an additional back-end
for pyMIC to utilize HAM’s API.

III. THE INTEL XEON PHI COPROCESSOR

The Intel Xeon Phi coprocessor [5] is a massively parallel
compute device deployed as a PCI* Express (gen 2) extension
card. Its foundations in the well-known Intel Architecture (IA)
enables a rich choice of programming models to program
both Xeon processors and the Xeon Phi coprocessor. The
similar architecture keeps the programming environment and
tool chain the same across the two platforms.

Fig. 1 shows the Intel Many Integrated Core architecture
and the Intel Xeon Phi coprocessor. The coprocessor offers
up to 61 general-purpose cores with a base frequency of up
to 1238 MHz and a maximum of 16 GB of on-card GDDR5
memory. With turbo mode, the frequency can be increased to
a maximum of 1333 GHz. The cores are based on a revamped
Intel R© Pentium R© (P54C) processor design [2]. Each core can
execute 64-bit instructions and offers a 512-bit wide Vector
Processing Unit (VPU) for SIMD processing. Each of the

Fig. 1. High-level architecture of the Intel Xeon Phi coprocessor with cores,
the ring interconnect, and system interface.

Fig. 2. Schematic view of one coprocessor core with caches, pipelines, and
ring hub.

cores supports four hardware threads with four-way round-
robin scheduling. In each clock cycle, the decoder stage selects
a new instruction stream and feeds its next instruction into
the pipeline. The peak floating-point performance for double
precision (DP) is 1208 GFLOPS or 2416 GFLOPS for single-
precision (SP) computation, respectively.

Each core of the coprocessor owns a private L1 and L2
cache with 32 KB and 512 KB, respectively. With 61 cores, the
overall size of the L2 cache is 31.5 MB. Similar to traditional
IA, caches are fully coherent and implement the standard
coherency protocol across the caches and the card’s memory.
An on-die network connects all cores and their L2 caches.
The ring consists of several bidirectional rings specializing for
different kinds of traffic: a 64-byte wide data-block ring (BL),
two command and address rings (AD), and two coherency and
credit rings (AK). The tag directories that keep track of cache
contents are uniformly distributed across the ring network.

Each coprocessor core has two execution pipelines: scalar
and vector (see Fig. 2). The scalar pipeline executes all
scalar instructions, such as branches, address calculations, and
other non-vector instructions of the Intel instruction set. The
vector pipeline executes the 512-bit SIMD instructions and
can also execute scalar instructions for increased throughput.
The decoder stage can decode and feed two instructions si-
multaneously into the core’s pipelines. The SIMD instructions

2

support DP and SP computation as well as integer arithmetic.
Each instruction can be masked through a register of true and
false values or can contain a swizzle pattern to rearrange data
before an operation is applied to the vector elements. Load
and store instructions further support data conversions, such
as converting a vector of integer values to a vector of DP or
SP values.

The coprocessor runs a complete Linux* software stack
with support for TCP/IP and OFED/DAPL-based software as
well as the typical Linux APIs (e. g., system calls, POSIX*
threads, etc.). As an IA-based compute device, it can support a
variety of (parallel) programming models that are available on
IA. The Intel R© Composer compiler suite for the Intel Xeon Phi
coprocessor supports C/C++ and Fortran (including Co-Array
Fortran). The suite also supports the OpenMP* API version
4.0 [21] and MPI [17] as the traditional HPC models for thread
and process parallelism. The VPU can be accessed through
the auto-vectorization feature of the Intel Composer, compiler
pragmas, OpenMP SIMD constructs, and through low-level
intrinsic functions. For each of the programming models, there
is the option of using the coprocessors of a cluster as individual
compute nodes (native mode) or in a heterogeneous offload
mode where a host thread transfers data and control to the
coprocessor from time to time [7], [8].

IV. THE PYMIC MODULE

In this section, we present key requirements and design
decisions that influenced the interface of the pyMIC module.
We then show the integral parts of the pyMIC interface and
show how offloading can be used from a Python application.
Finally, the section concludes with an introduction into the
implementation of the pyMIC module.

A. Design

The key guiding principle of the design of the pyMIC
module is to provide an easy-to-use, slim interface at the
Python level. At the same time, programmers should have
full control over data transfers and offloading, to avoid poten-
tial inefficiencies or non-determinism while executing offload
code. Because Numpy is a well-known package for dealing
with (multi-dimensional) array data, we explicitly designed
pyMIC to blend well with Numpy’s ndarray class and its
array operations. As we will see later, ndarrays are the
granularity of buffer management and data transfer between
host and coprocessors.

Although the Intel LEO approach is very generic in that
it supports offloading of arbitrary code regions marked by
compiler pragmas or directives, a similar approach for Python
would require specialized syntax to tag Python code for
offloading. While this approach seems the most generic, we
avoid its complexity in favor of the simplicity of the pyMIC
interface. Instead, we adopt the offload model of Intel Cilk
Plus that uses functions as the main granularity for offloading.
The rationale is that in the case of Numpy most compute-
intensive operations are implemented through function calls. In
addition, most HPC codes exhibit their computational hotspots
(e.g., solvers) as functions or function calls into libraries such
MKL. Whereas Cilk Plus uses virtual shared memory to handle
data transfers transparently, we require explicit transfers to

1 import pyMIC as mic
2
3 # a c q u i r e han d l e o f o f f l o a d t a r g e t
4 dev = mic . d e v i c e s [0]
5 o f f l a = dev . a s s o c i a t e (a)
6
7 # load l i b r a r y w / k e r n e l
8 dev . l o a d l i b r a r y (” l i b n o p . so ”)
9

10 # i n v o k e k e r n e l
11 dev . i n v o k e k e r n e l (” nop ”)

Fig. 3. Simplistic offload example to acquire an offload device and invoke
a kernel.

1 /∗ c o m p i l e w i t h :
2 i c c −mmic −fPIC −sh ar ed −o l i b n o p . so nop . c
3 ∗ /
4
5 # i n c l u d e <p y m i c k e r n e l . h>
6
7 PYMIC KERNEL
8 void nop (i n t argc , u i n t p t r t a r g p t r [] ,
9 s i z e t s i z e s []) {

10 /∗ do n o t h i n g ∗ /
11 }

Fig. 4. Empty kernel implementing the nop kernel of Fig. 3.

avoid hidden transfer overheads that are hard to detect by
programmers.

Finally, we require pyMIC to integrate well with other
offload programming models for the Intel Xeon Phi copro-
cessor, most notably the Intel LEO model. Several HPC
applications not only use Python code, but also implement
parts of their application logic in C/C++ and/or Fortran. We
strive to keep pyMIC flexible, so that advanced programmers
can mix Python offloads with C/C++ or Fortran offloads. For
instance, one could allocate data in an ndarray, transfer it to
the coprocessor through the pyMIC interface, and then use the
data from an offloaded C/C++ code region in a Python C/C++
extension.

B. Interface

The pyMIC interface consists of two key classes:
offload_device and offload_array. The
offload_device class provides the interface to interact
with offload devices, whereas offload_array implements
the buffer management and primitive operations on a buffer’s
data.

Fig. 3 shows a simplistic example of how to invoke a
simple kernel with no input arguments. The code first imports
the pyMIC module and makes its name space available as mic.
Once initialized, all available offload devices are enumerated
through the module variable devices and can be selected
through their numerical ID. If the ID does not match an
available offload target, an exception is raised.

The two operations implemented by offload_device
are: invoke_kernel and load_library. The
invoke_kernel method can be used to invoke a function

3

TABLE I. OPERATIONS OF THE OFFLOAD_ARRAY CLASS.

Operation Semantics
update_host() Transfer the buffer from the device
update_device() Transfer the buffer to the device
fill(value) Fill the buffer with the parameter
fillfrom(array) Copy the content array to into the offload buffer
zero() Fill the buffer with 0 (equivalent to fill(0.0))
reverse() Reverse the contents of the buffer.
reshape() Modify the dimensions of the buffer; creates a new view.

on the target device once the native code has been loaded by
load_library. The invoke_kernel method requires at
least one argument, which has to contain a Python string that
corresponds to the function name of the kernel to be invoked.
For the example in Fig. 3, a kernel that implements a no-op
might look like the C code in Fig. 4.

Kernel functions have to be compiled as a native
shared-object library so that they can be loaded by calling
load_library with the library’s filename. The function
attribute PYMIC_KERNEL ensures that the compiler emits the
function symbol with the right visibility, so that the symbol
can be found after the library has been loaded.

The function signature of the kernel is required to match
the formal parameters as shown in Fig. 4. The first parameter,
argc, determines the number of actual arguments passed
into the kernel through invoke_kernel. The argptr
and sizes argument contain pointers to the data and their
respective sizes in bytes.

Fig. 5 and Fig. 6 show a more sophisticated example of
a dgemm kernel that uses three Numpy arrays (the matrices)
plus scalar data (the matrices’ dimensions as well as α and
β) to invoke the kernel. The code first creates and initializes
three Numpy arrays to store the matrices a, b, and c. It then
associates each of the Numpy arrays with a corresponding
offload_array. The associate method hands an ar-
ray’s data over the pyMIC’s buffer management and allocates
buffer space on the target device. By default it also issues the
initial data transfer so that the buffer is initialized properly
on the target. If desired this initial transfer can be skipped by
passing False as the second argument to associate.

The code in Fig. 5 passes the associated data buffers as
additional arguments to invoke_kernel after the kernel’s
name. It also passes all scalar data (variables m, n, n, alpha,
and beta) to the kernel. The offload infrastructure automati-
cally performs a copy-in operation for these data that are not
already present on the device. Because our module cannot
safely determine if the data has been changed, it performs
a copy-out operation to update the corresponding host data
for all non-present array structures. To manually update data
on the target or the host, the offload_array class offers
the methods update_host and update_device for each
respective direction of data transfer.

Table I summarizes the additional operations that are
offered by the offload_array class. In addition, the
offload_array implements the full set of array operations
for element-wise addition, multiplication, etc. The operations
are all performed on the target device and only require a data
transfer if the input data of the second operand is not yet
present on the target.

Fig. 6 shows what unpacking of data for the kernel in-

1 import pyMIC as mic
2 import numpy as np
3
4 # s i z e o f t h e m a t r i x e s
5 m = 4096
6 n = 4096
7 k = 4096
8
9 # c r e a t e some i n p u t da ta

10 a l p h a = 1 . 0
11 b e t a = 0 . 0
12 a = np . random . random (m∗k) . r e s h a p e ((m, k))
13 b = np . random . random (k∗n) . r e s h a p e ((k , n))
14 c = np . z e r o s ((m, n))
15
16 # load k e r n e l l i b r a r y
17 dev = mic . d e v i c e s [0]
18 dev . l o a d l i b r a r y (” libdgemm . so ”)
19
20 # a s s o c i a t e h o s t a r r a y s w i t h t a r g e t a r r a y s
21 o f f l a = dev . a s s o c i a t e (a)
22 o f f l b = dev . a s s o c i a t e (b)
23 o f f l c = dev . a s s o c i a t e (c)
24
25 # per fo rm t h e o f f l o a d
26 dev . i n v o k e k e r n e l (” dgemm kernel ” ,
27 o f f l a , o f f l b , o f f l c ,
28 m, n , k ,
29 a lpha , b e t a)
30
31 o f f l c . u p d a t e h o s t ()

Fig. 5. Using pyMIC to perform a dgemm operation on the coprocessor.

1 # i n c l u d e <p y m i c k e r n e l . h>
2 # i n c l u d e <mkl . h>
3
4 PYMIC KERNEL
5 void dgemm kernel (i n t argc ,
6 u i n t p t r t a r g p t r [] ,
7 s i z e t s i z e s []) {
8 i n t i ;
9

10 double ∗A = (double ∗) a r g p t r [0] ;
11 double ∗B = (double ∗) a r g p t r [1] ;
12 double ∗C = (double ∗) a r g p t r [2] ;
13 i n t m = ∗ (long i n t ∗) a r g p t r [3] ;
14 i n t n = ∗ (long i n t ∗) a r g p t r [4] ;
15 i n t k = ∗ (long i n t ∗) a r g p t r [5] ;
16 double a l p h a = ∗ (double ∗) a r g p t r [6] ;
17 double b e t a = ∗ (double ∗) a r g p t r [7] ;
18
19 cblas dgemm (CblasRowMajor ,
20 CblasNoTrans ,
21 CblasNoTrans ,
22 m, n , k ,
23 a lpha , A, k ,
24 B , n ,
25 be t a , C , n) ;
26 }

Fig. 6. Kernel in C implementing the offload part of Fig. 5.

4

_pyMICimpl
[C/C++]

Intel LEO runtime of
flo

ad
_a

rr
ay

(k
er

ne
ls

) [
C]

pyMIC
[Python]

Fig. 7. Architecture of the pyMIC module.

vocation of Fig. 5 looks like on the target. The arguments
given to invoke_kernel are passed to the C function on
the target in the exact same order as they appear at the Python
level. For arrays, one can easily unpack them by applying a
cast operation to retrieve a pointer from the argptr array.
Scalar values are also passed by pointers and thus require
one dereferencing operation to retrieve the scalar value. After
all the unpacking has been performed, the code calls the C
interface of MKL’s dgemm function to run the actual kernel.

C. Implementation

The layered architecture of the pyMIC module is depicted
in Fig. 7. The top-level module contains all the high-level
logic of the pyMIC module and provides the pyMIC API to
be used by the application. Underneath this API module, a
Python extension module (_pyMICimpl) written in C/C++
interfaces with the offload runtime of the Intel Composer XE
and its LEO pragmas. In addition, pyMIC contains a library
with standard kernels that implement all the array operations
of offload_array (see Table I).

We have opted to use C++ to implement the _pyMICimpl
to make use of STL for improved coding productivity. As
a matter of fact, the interface of the extension is exposed
to Python with the C calling convention, while the remain-
der of the code is plain C++. The internal code design of
_pyMICimpl provides a series of abstractions so that, for
instance, the Intel LEO pragmas can easily be replaced by the
HAM interface or another offload implementation.

D. Buffer Management

Buffer management is critical when it comes to perfor-
mance; we need to make sure that we issue as few data
transfers as possible.

The high-level Python data management primitives
(associate, update_host, update_device) have
a direct correspondence with low-level routines in the
_pyMICimpl module. Fig. 8 shows how the Python code
interacts with the low-level interfaces. If, for instance,
an update of the device is requested for an array, the
update_device method invokes the corresponding ex-
tension function of the _pyMICimpl module and passes
the Numpy array and it’s size information along. After
processing the actual arguments (PyArg_ParseTuple),
the _pymic_impl_buffer_update_on_target func-
tion invokes the buffer_update_on_target low-level
function that is shown in Fig. 9.

1 c l a s s o f f l o a d a r r a y :
2 def u p d a t e d e v i c e (s e l f) :
3 s e l f . d e v i c e .
4 b u f f e r u p d a t e o n t a r g e t (s e l f . a r r a y)
5 re turn None
6
7 c l a s s o f f l o a d d e v i c e :
8 def a s s o c i a t e (s e l f , a r r a y ,
9 u p d a t e d e v i c e =True) :

10 i f not i s i n s t a n c e (a r r a y , np . n d a r r a y) :
11 r a i s e V a l u e E r r o r (” . . . ”)
12
13 # c o n s t r u c t a new o f f l o a d a r r a y
14 a s s = o f f l o a d a r r a y (a r r a y . shape ,
15 a r r a y . d type ,
16 o r d e r)
17 a s s . a r r a y = a r r a y
18
19 i f u p d a t e d e v i c e :
20 # a l l o c a t e & copy
21 s e l f . c o p y t o t a r g e t (a s s . a r r a y)
22 e l s e :
23 # o n l y a l l o c a t e
24 s e l f . b u f f e r a l l o c a t e (a s s . a r r a y)
25
26 re turn a s s
27
28 def b u f f e r u p d a t e o n t a r g e t (s e l f ,
29 ∗ a r r a y s) :
30 i f l e n (a r r a y s) == 0 :
31 r a i s e
32 V a l u e E r r o r (” no argument ”)
33 i f t y p e (a r r a y s [0]) == t u p l e :
34 a r r a y s = a r r a y s [0]
35 f o r a r r a y in a r r a y s :
36 n b y t e s = i n t (a r r a y . n b y t e s)
37 p y m i c i m p l b u f f e r u p d a t e o n t a r g e t (
38 s e l f . map dev id () , a r r a y , n b y t e s)
39 re turn None

Fig. 8. Example functions for buffer management in pyMIC: associate
and update_device.

For the buffer management and data transfer we rely
on the Intel LEO pragmas that allow for fine-grained con-
trol of each aspect data transfers. As Fig. 9 shows, func-
tion buffer_allocate, the offload pragma targets a spe-
cific coprocessor device indicated by the ID in the variable
device. To allocate a buffer, we do not need to transfer
data (indicated by nocopy), but we need to allocate memory
on the target (alloc_if(1)) and keep it (free_if(0)).
The size of the buffer is specified through the size variable.
By using the align(64) clause we also ensure that the
buffer is aligned for maximum performance of the coprocessor.
An alignment of 64 bytes naturally matches the width of the
SIMD vectors of the coprocessor cores and thus provides best
performance.

For a buffer update, we can safely assume that the buffer
has already been allocated by a call to buffer_allocate
on the target device, so we transfer size bytes pointed to by
the pointer data to the coprocessor (in). The fact that the
buffer is already allocated is expressed by alloc_if(0) and
free_if(0), which tells the LEO runtime to not allocate or
release any buffer space.

5

1 s t d : : unordered map<u i n t p t r t , u i n t p t r t >
2 b u f f e r s [PYMIC MAX DEVICES] ;
3
4 void b u f f e r a l l o c a t e (
5 i n t dev i ce ,
6 char∗ da ta ,
7 s i z e t s i z e) {
8 u i n t p t r t h o s t p t r = (u i n t p t r t) d a t a ;
9 u i n t p t r t dev = 0 ;

10 #pragma o f f l o a d t a r g e t (mic : d e v i c e)
11 o u t (d e v p t r)
12 nocopy (d a t a : l e n g t h (s i z e)
13 a l i g n (6 4)
14 a l l o c i f (1) f r e e i f (0))
15 {
16 d e v p t r = (u i n t p t r t) d a t a ;
17 }
18 b u f f e r s [d e v i c e] [h o s t p t r] = d e v p t r ;
19 }
20
21 void b u f f e r u p d a t e o n t a r g e t (
22 i n t dev i ce ,
23 char∗ da ta ,
24 s i z e t s i z e)
25 {
26 u i n t p t r t h o s t p t r =
27 r e i n t e r p r e t c a s t <u i n t p t r t >(d a t a) ;
28 u i n t p t r t d e v i c e p t r = 0 ;
29 #pragma o f f l o a d t a r g e t (mic : d e v i c e) \
30 o u t (d e v i c e p t r) \
31 i n (d a t a : l e n g t h (s i z e) \
32 a l i g n (6 4)
33 a l l o c i f (0) f r e e i f (0))
34 {
35 / / do n o t h i n g
36 }
37 }

Fig. 9. Buffer management: data allocation on the device and data transfer
to the device.

Intel LEO automatically maintains a mapping between a
pointer on the host and the corresponding pointer on the device.
The data pointer argument of buffer_allocate points
to the raw storage space of a Numpy array that we associate or
update. Once the pointer is used with the offload pragma, LEO
establishes the mapping between the pointee and the storage
location for it on the coprocessor. Although it is maintained
transparently, we need to determine the device pointer (Fig. 9,
line 16) and transfer this value back to the host as a integer
value. We will later use these integer values as the pointer
values passed into the kernel functions.

E. Kernel Invocation

As described above, kernel invocation is performed by call-
ing the invoke_kernel method of the offload_device
class. Before a kernel can be called, its shared-object library
needs to be loaded on the target device (load_library).

The implementation of load_library is straightfor-
ward. It enters the extension module and issues an offload
region that invokes the dlopen system call of the Linux*
kernel to load the shared library into the process space on the
coprocessor. The handle of the loaded library is then cached

in an stl::unordered_map, so that the handle can be
used to search the library with the dlsym function to find the
function pointer of a particular kernel function.

Once a library has been loaded, its kernel functions can be
used by invoke_kernel. It calls dlsym to find a function
that matches the kernel name and then prepares the argc,
argptr, and sizes arguments for the kernel. To avoid
expensive search operations in libraries, the function pointer
of a kernel is cached once it has been executed for the first
time.

For each actual argument that is a Numpy ndarray,
the invoke_kernel automatically allocates a buffer on
the device and copies the data to it. The resulting device
pointer is then added to the argptr array (copy-in). If the
actual argument is a scalar value, our implementation creates a
Numpy ndarray with just a single element and performs the
same operations as with other arrays. If the actual argument
is an offload_array, we assume that the data has been
allocated and transferred ahead-of-time. Once the argument
list has been processed, the native part of invoke_kernel
then issues the actual function call of the kernel function on
the target device. For all Numpy ndarrays that have been
copied to the device, the code automatically also performs the
copy-out operation to transfer any potential modifications of
the array data on the target back on the host.

V. INTEGRATION IN GPAW

GPAW uses Python to allow for a programmer-friendly im-
plementation of high-level algorithms. C and high-performance
libraries are used to obtain high performance for the compu-
tational kernels. The main parallelization approach is MPI,
which can be invoked from both Python and C code. The
development version of code offers also a hybrid OpenMP/MPI
implementation.

In traditional HPC systems, the overhead from Python is
typically on the order of a few percents [10]. First tests for
running GPAW natively on the Intel Xeon Phi coprocessor
have indicated that overheads associated with the Python
parts can become prohibitively large compared to standard
CPU version. Thus, offloading only the most computationally
intensive kernels and libraries appears to be the most promising
way to use the Intel Xeon Phi coprocessor.

The success of GPAW’s GPU implementation is largely due
to fact that it is possible to allocate large arrays on the acceler-
ator in the early phase of calculation. These array allocations
as well as simple manipulations (additions, multiplications,
etc.) can be done at the level of the Python code, which helps
keep the data transfers between the host and the device to a
minimum.

pyMIC offers a natural way to follow a similar approach
also with Intel Xeon Phi coprocessor. As offload_array
resembles the Numpy ndarray, a large part of the high-
level algorithms and code can be kept intact. The choice of
actual kernels and the placement of data (host for ndarray
and coprocessor for offload_array) can be made at a
relatively low level, which allows one to utilize offloading with
only a few of code changes. Fig. 10 shows an example of high-
level GPAW usage: when creating arrays with gd.zeros

6

1 from gpaw . g r i d d e s c r i p t o r
2 import G r i d D e s c r i p t o r
3
4 g p t s = (6 4 , 64 , 64)
5 nbands = 512
6 c e l l = (8 . 2 3 , 8 . 2 3 , 8 . 2 3)
7 gd = G r i d D e s c r i p t o r (gp t s , c e l l)
8
9 p s i t n G = gd . z e r o s (nbands , mic=True)

10 vt G = gd . z e r o s (mic=True)
11 # I n i t i a l i z e p s i t n G and vt G
12 h t p s i t n G = gd . z e r o s (nbands , mic=True)
13
14 f o r n in r a n g e (nbands) :
15 h t p s i t n G [n] = vt G ∗ p s i t n G [n]
16
17 H nn = gd . i n t e g r a t e (ps i t nG , h t p s i t n g)

Fig. 10. Example of high level GPAW code utilizing pyMIC.

1 import pyMIC as mic
2
3 d e v i c e = mic . d e v i c e s [0]
4
5 . . .
6 def z e r o s (s e l f , n = () , d t y p e = f l o a t ,
7 mic= F a l s e) :
8
9 a r r a y = s e l f . new ar ray (n , d t y p e)

10 i f mic :
11 re turn d e v i c e . a s s o c i a t e (a r r a y)
12 e l s e :
13 re turn a r r a y

Fig. 11. Example of array creation function in GPAW.

one designates that an array should be an offload_array
by using an additional argument. Later on, the high-level
code remains the same as for NumPy arrays, e.g. calls to
gd.integrate do not need to be changed, but at a lower
level the actual operation is performed on the coprocessor.
Fig. 11 shows what the lower level array creation routine looks
like.

Next, we discuss selected key kernels of GPAW where we
have implemented offloading to the coprocessor. The focus is
on the real-space grid mode of GPAW which generally offers
the best parallelization prospects by the domain decomposition
of a real-space grid. A more detailed description about the
algorithms used in GPAW can be found in [10], [11], [22].

Especially in larger systems the most computationally
intensive operations (which scales on the order of O(N3) with
the number of atoms) are related to subspace diagonalization
and orthonormalization which contain integrals of the form

Onm =

∫
dV ψ̃n(r)Ôψ̃m(r), (1)

where the ψ̃i are the Kohn-Sham wave functions of the density-
functional theory and Ô is either the Hamiltonian or the
overlap operator. When using uniform real-space grids the

TABLE II. LATENCY (IN MILLISECONDS) OF OFFLOAD OPERATIONS.

Operation Latency
associate (8 bytes) 0.13
update_device (8 bytes) 0.06
update_host (8 bytes) 0.10
invoke_kernel (empty kernel) 0.05

integrals can be evaluated as a sum over grid points G

Onm =
∑
G

ψ̃nG
˜(Oψ)mGdV (2)

i.e., as matrix-matrix products. Other types of matrix-matrix
products appearing in subspace diagonalization and orthonor-
malization are

ψ̃′nG =
∑
m

Onmψ̃
′
mG. (3)

The matrices ψ̃nG are very skewed as the matrix dimen-
sions depend on the number of electrons and grid points in the
simulation. A typical number of of electrons is n = 60 up to
2048, while a common grid size G is between 323 and 2003

(≈ 32, 000−8, 000, 000). One should note that for small num-
ber of electrons and grid points, other parts of the algorithm
rather than these O(N3) operations dominate the computational
time, while for very large calculations parallelization over tens
or hundreds of nodes is needed. For a single Intel Xeon Phi
coprocessor representative matrix dimensions are n = 512 and
G = 643(≈ 260000).

VI. PERFORMANCE

To assess the performance of the Python offload module,
we ran a series of micro-benchmarks on a node of the Endeavor
cluster at Intel [25]. The node is equipped with two Intel R©

Xeon R© E5-2697 processors with 2.70 GHz (turbo mode and
Intel R© Hyper-Threading enabled) and a total of 64 GB of
DDR3 memory at 1867 MHz. The node is equipped with
two Intel Xeon Phi 7120P coprocessors with 61 cores at
1238 MHz (maximum turbo upside 1333 MHz) and 16 GB
of GDDR5 memory each. The host runs Red Had Enter-
prise Linux (RHEL) 6.5 (kernel version 2.6.32-358.6.2) and
MPSS 3.3.30726 (coprocessor kernel 2.6.38.8+mpss3.3). We
use Intel Composer XE 2013 for C/C++ version 14.0.3.174
to compile the extension module. The Python interpreter is
the standard CPython interpreter (version 2.6.6) shipped with
RHEL. Numpy is version 1.8.2 and has been setup to use
the multi-threaded Math Kernel Library shipped with Intel
Composer XE.

We determine the performance on a single Xeon processor
package (24 threads) and compare it against one coprocessor
(240 threads). We leave one core of the coprocessor empty to
handle the operating system load and offload data transfers.
Affinity has been set to bind each OpenMP thread of MKL
to its own hardware thread. This is in line with most cluster
configurations in the Top500 list [25]. A 2:2 ratio of processors
to coprocessors improves locality and yields optimal offload
performance.

We assess the performance of our pyMIC offload infras-
tructure by a series of select micro-benchmarks to determine
latency and bandwidth achieved for the buffer management
functions of Section IV-D. Each of the benchmarks runs for

7

Fig. 12. Bandwidth achieved for copying data to and from the target device.

1,000,000 repetitions to rule out any jitter. Table II lists the
latencies of key primitive operations of the pyMIC infras-
tructure. Associating a Numpy array with one element (8
bytes) on the host with a buffer on the coprocessor takes
about 0.13 milliseconds (msec). This time includes the time
required on the coprocessor to perform the offload, allocate
physical pages on the coprocessor, and transfer 8 bytes (which
is negligible). The time of course also includes any overhead
of executing our module’s Python code and the glue code of
the extension module. Similar figures can be observed for the
transfer of data to and from the coprocessor. The operations
update_device and update_host are slightly less ex-
pensive from a latency perspective because they do not require
the allocation of physical memory on the offload device.

Fig. 12 shows the bandwidth achieved for the transfer
operations for different data sizes from 8 bytes to 2.1 GiB.
For small data sizes, the calling overhead and offload latency
dominate the operation and thus the achievable bandwidth
stays low. At about 32 MiB of transferred data, bandwidth
begins to dominate latency and thus the achieved transfer
rate starts to increase. Transfer rates get close to the peak
bandwidth that can be achieved with the PCIe bus (gen 2) for
large arrays. The update_device and update_host op-
erations perform slightly better from a bandwidth perspective,
because in contrast to associate they do not require the
allocation of physical pages on the coprocessor.

As our final micro-benchmark, we measured the GFLOP
rate of a dgemm operation (C = αAB + βC) in several
different settings and different matrix sizes. Without loss of
generality, we restrict ourselves to quadratic matrices, because
we focus on the offload performance versus host performance.
Skewed matrices would expose the same behavior across
different sizes owing to the fact that latency and bandwidth
are dominating factors for offloading. We measured Numpy’s
implementation (using MKL) of the * operator for its matrix
class, MKL’s dgemm routine on the host, and the offloaded
version. For all operations, we use α = 1.0 and β = 0.0.

Fig. 13 shows the GFLOPS rates achieved for the
matrix-matrix multiplication. Numpy yields approximately
86 GFLOPS for the largest matrices tested. Numpy incurs some
additional overhead compared to MKL’s dgemm operation,
because of a temporary matrix that has to be allocated to
store the intermediate result T = AB before performing the
addition with C. This is effectively avoided by calling the

Fig. 13. Performance of the MKL dgemm operation.

TABLE III. PERFORMANCE (IN SECONDS) AND SPEEDUP S OF
INTEGRATE AND ROTATE OPERATIONS IN GPAW.

integrate rotate
Matrix size Xeon Xeon Phi S Xeon Xeon Phi S

n=256, G=483 0.10 0.11 0.91x 0.10 0.04 2.50x
n=256, G=643 0.25 0.25 1.00x 0.26 0.10 2.60x
n=256, G=863 0.61 0.55 1.11x 0.55 0.17 3.24x
n=256, G=963 0.78 0.79 0.99x 1.59 0.31 5.13x
n=512, G=483 0.30 0.12 2.50x 0.35 0.11 3.18x
n=512, G=643 0.74 0.27 2.74x 0.91 0.28 3.25x
n=512, G=863 1.75 0.57 3.07x 1.89 0.50 3.70x
n=512, G=963 2.53 0.97 2.61x 6.28 0.92 6.83x

MKL’s dgemm natively, passing in the floating-points arrays
directly. Hence, we can observe that the pure MKL version
(219 GFLOPS) performs about twice as well as the Numpy
version (86 GFLOPS). The offloaded dgemm computation
(including transfer overhead) on the Intel Xeon Phi copro-
cessor achieves 439–538 GFLOPS sustained performance. If
data transfers and offload overhead are excluded, performance
slightly improves by about 12%. As expected, for very small
matrices MKL’s multi-threaded dgemm on the host gives best
results, because the offload and setup overhead cannot be
compensated on the target device for these matrix sizes.

We also investigated the performance of matrix multiplica-
tions similar to the operations in GPAW. Table III shows the
performance of the integrate operation, Eq. (2), and rotation,
Eq. (3), of Section V for problem sizes relevant for single co-
processor usage. Like the pure dgemm operation (see Fig. 13),
for small data sizes the host performs best, but with larger data
sets offloading can offer speedups from 2.5 to 6.8 compared
to the host-only execution.

VII. CONCLUSION

In this paper, we have shown the implementation and the
performance of a Python module to offload compute kernels
from a Python application to the Intel Xeon Phi coprocessor.
In line with Python’s philosophy of easy-to-use, flexible pro-
gramming, our module offers a small, yet concise interface
to offload kernels to coprocessor devices and to manage data
transfers. Our micro-benchmarks indicate that the overhead
incurred is low and does not overly affect performance in a
negative way. We have also presented how the module can be
used in the context of electronic structure simulation software
GPAW. For the selected kernels, offloading to a coprocessor
with the help of the pyMIC module can speedup the compu-

8

tations by a factor of 2.5-6.8 with large enough data sets. So
far, we have implemented offloading only for the two most
import kernels of GPAW. As the results are promising, we are
also going to implement offloading for other key kernels and
investigate how much the full calculation can be accelerated.
Furthermore, we plan to utilize multiple coprocessors in the
MPI based parallel calculations with GPAW.

The pyMIC project is continuing work and we have a
roadmap of features that will be added to the module in the
future. All data-transfer operations and kernel invocations are
synchronous, that is, the host thread waits for the operation
to complete and to return control back to the host thread. We
plan to add support for asynchronous operations by returning a
handle from the pyMIC operations; the Python code can then
use a method of the handle object to wait for completion of
the operation. One optimization we would like to implement
in the future is to avoid unnecessary copy-in and copy-out
operations when Numpy data is passed to invoke_kernel
as arguments without associating it with offload_array.
One solution could be to add Fortran-like intent descriptions
to the arguments, such that invoke_kernel can determine
if copy-in, copy-out, or both is requested by the programmer.

Finally, we are working to lift the restriction of having to
use C/C++ or Fortran code to implement the offload kernels.
We have already started to investigate how to execute fully
functional Python code as part of the kernel invocation.

ACKNOWLEDGMENTS

Parts of this work were supported by an Intel R© Parallel
Computing Center Grant.

Intel, Pentium, Xeon Phi, and Xeon are trademarks or regis-
tered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

* Other brands and names are the property of their respective
owners.

** Performance tests are measured using specific computer
systems, components, software, operations, and functions. Any
change to any of those factors may cause the results to vary.
You should consult other information and performance tests
to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined
with other products. System configuration: Intel “Grizzly
Pass” server two Intel Xeon E5-2697v2 12-core processors at
2.7 GHz (64 GB DDR3 with 1867 MHz), Red Had Enterprise
Linux 6.5 (kernel version 2.6.32-358.6.2) and Intel C600
IOH, one Intel Xeon Phi 7120P coprocessor (C0 stepping,
GDDR5 with 3.6 GT/sec, driver v3.3-1, flash image/micro OS
2.1.02.0390), and Intel Composer XE 14.0.3.174.

REFERENCES

[1] https://wiki.fysik.dtu.dk/gpaw.
[2] Intel Corporation. Pentium R© Processor 75/90/100/120/133/150/

166/200, 1997. Document number 241997-010.
[3] Intel Corporation. Intel R© Manycore Platform Software

Stack (MPSS), 2014. https://software.intel.com/en-us/articles/
intel-manycore-platform-software-stack-mpss.

[4] Intel Corporation. Intel R© SDK for OpenCLTM Applications, 2014.
http://software.intel.com/en-us/intel-opencl.

[5] Intel Corporation. Intel R© Xeon PhiTM Coprocessor System Software
Developers Guide, 2014. Document number 328207-003EN.

[6] Intel Corporation. Reference Manual for Intel R© Manycore Math Kernel
Library 11.2, 2014. https://software.intel.com/en-us/mkl 11.2 ref.

[7] Intel Corporation. User and Reference Guide for the Intel R© C++
Compiler 14.0, 2014. Document number 328222-002US.

[8] Intel Corporation. User and Reference Guide for the Intel R© Fortran
Compiler 14.0, 2014. Document number 328223-002US.

[9] I. de Jong. Pyro—Python Remote Objects, 2014. http://pythonhosted.
org/Pyro4/.

[10] J. Enkovaara, N. A. Romero, S. Shende, and J.J. Mortensen. GPAW -
Massively Parallel Electronic Structure Calculations with Python-based
Software. Procedia Computer Science, 4(0):17 – 25, 2011.

[11] J. Enkovaara, C. Rostgaard, J.J. Mortensen, J. Chen, M. Dułak,
L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H.A. Hansen, H.H.
Kristoffersen, M. Kuisma, A.H. Larsen, L. Lehtovaara, M. Ljungberg,
O. Lopez-Acevedo, P.G. Moses, J. Ojanen, T. Olsen, V. Petzold, N.A.
Romero, J. Stausholm-Møller, M. Strange, G.A. Tritsaris, M. Vanin,
M. Walter, B. Hammer, H. Häkkinen, G.K.H. Madsen, R.M. Nieminen,
J.K. Nørskov, M. Puska, T.T.Rantala, J.Schiøtz, K.S. Thygesen, and
K.W. Jacobsen. Electronic Structure Calculations with GPAW: a Real-
space Implementation of the Projector Augmented-wave Method. J.
Phys.: Cond. Matter, 22(25), 2010.

[12] T. Filiba. RPyC—Transparent, Symmetric Distributed Computing, June
2014. http://rpyc.readthedocs.org/en/latest/.

[13] Python Software Foundation. Extending Python with C or C++, 2014.
https://docs.python.org/2/extending/extending.html.

[14] S. Hakala, V. Havu, J. Enkovaara, and R. Nieminen. Parallel Elec-
tronic Structure Calculations Using Multiple Graphics Processing Units
(GPUs). In Pekka Manninen and Per Öster, editors, Applied Parallel
and Scientific Computing, volume 7782 of Lecture Notes in Computer
Science, page 63. Springer Berlin Heidelberg, 2013.

[15] Y. Hold-Geoffroy, O. Gagnon, and M. Parizeau. Once you SCOOP, no
Need to Fork. In Proc. of the 2014 Annual Conf. on Extreme Science
and Engineering Discovery Environment, Atlanta, GA, July 2014.

[16] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih.
PyCUDA and PyOpenCL: A Scripting-based Approach to GPU Run-
time Code Generation. Parallel Computing, 38(3):157–174, March
2012.

[17] MPI Forum. MPI: A Message-Passing Interface Standard. Version 3.0,
September 2012. available at: http://www.mpi-forum.org.

[18] C.J. Newburn, S. Dmitriev, R. Narayanaswamy, J. Wiegert, R. Murty,
F. Chinchilla, R. Deodhar, and R. McGuire. Offload Runtime for
the Intel R© Xeon PhiTM Coprocessor. Technical report, Intel Corpora-
tion, March 2013. Available at https://software.intel.com/en-us/articles/
offload-runtime-for-the-intelr-xeon-phitm-coprocessor.

[19] M. Noack, F. Wende, F. Cordes, and T. Steinke. A Unified Programming
Model for Intra- and Inter-Node Offloading on Xeon Phi Clusters. In
Proc. of the Intl. Conf. on High Performance Computing, Networking,
Storage and Analysis, New Orleans, LA, November 2014. To appear.

[20] Numpy Developers. NumPy, 2014. http://www.numpy.org/.

[21] OpenMP Architecture Review Board. OpenMP Application Program
Interface, Version 4.0, 2013. http://www.openmp.org/.

[22] N.A. Romero, C. Glinsvad, A.H. Larsen, J. Enkovaara, S. Shende, V.A.
Morozov, and J.J. Mortensen. Design and Performance Characterization
of Electronic Structure Calculations on Massively Parallel Supercom-
puters: a Case Study of GPAW on the Blue Gene/P Architecture.
Concurrency and Computation: Practice and Experience, pages n/a–
n/a, 2013.

[23] SciPy Developers. SciPy, 2014. http://www.scipy.org/.

[24] TIOBE Software BV. TIOBE Index for September 2014, September
2014. http://www.tiobe.com/.

[25] top500.org. Top500 Supercomputing Sites, June 2014. http://www.
top500.org/.

[26] T. von Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser. Active
Messages: A Mechanism for Integrated Communication and Computa-
tion. ACM SIGARCH Comp. Arch. News, 20(2):256–266, May 1992.

9

