
Computationally and Statistically Efficient Model
Fitting Techniques

Christine Harvey∗, Scott Rosen∗, James Ramsey∗, Christopher Saunders∗†, and Samar K. Guharay∗
∗The MITRE Corporation, McLean, Virginia 22102

†South Dakota State University, Brookings, South Dakota 57007

Abstract—In large-scale stochastic simulations, analysis with
sufficient accuracy is often extremely time consuming. The
complexity of the analysis is exacerbated with increasing di-
mensionality of the parameter space and sudden abruptness in
the topology of the input-output response surface. This paper
addresses computational issues in fitting and generating error
measures of simulation metamodels, demonstrating the merit of
high-performance computing in Python. We systematically com-
pare the speed of programming languages including MATLAB,
R and Python as well as using different computing architectures
including high-performing laptops and high-power parallel pro-
cessing clusters. The experimentation is discussed in this paper
using a simple scenario, and activities are being pursued to study
other scenarios with varying complexities that will be reported
at the conference.

I. INTRODUCTION

In large-scale stochastic simulations, completing a single
simulation with sufficient accuracy is often time consuming.
The complexity of the problem is exacerbated with increasing
dimensionality of the parameter space and sudden abruptness
in the topology of the input-output response surface. These
effects have been reported in multiple disciplines of basic and
applied science and technology, including high-energy astro-
physics [1]–[3], atmospheric science [4], systems biology [5],
power system networks [6], and many others. The importance
of developing new computing architectures and novel modeling
and simulation are well recognized [7]–[11]. Significant activ-
ities are being pursued to advance modeling and simulation
(M&S) through high-performance computing.

Simulation modeling frameworks often lead to increased
run times, which hinder analysis. Simulation metamodeling,
which involves building a model of a simulation model,
alleviates these long run times. A large body of literature exists
on metamodeling [12], [13]. One of our recent works reported
a complex case study with more than one hundred input
parameters and demonstrated effective means of identification
of the most relevant parameters incorporating both traditional
factor screening methods as well as controlled sequential
bifurcation [9].

The efficiency and effectiveness of metamodeling depends
on the underlying statistical and mathematical methods that
build the analytical foundation of the techniques approximating
metamodels to large-scale models. Additionally, the overall
computing architecture that develops the metamodel from the
large-scale M&S plays a very critical role in increasing the
speed of the experimentation with the simulation and the

Approved for Public Release; Distribution Unlimited. Case Number 14-
2940. c©2014 The MITRE Corporation. ALL RIGHTS RESERVED.

generation of the statistical measures used to evaluate the
metamodels goodness-of-fit.

This paper addresses some challenging questions for vali-
dating metamodels and builds an effective and efficient compu-
tational framework for quantifying standard error and bias. In
this pursuit, algorithms are developed for computing Bootstrap
error and the PRESS statistic, which requires massive calcu-
lations. A systematic speed comparison is made involving the
implementation of different programming languages including
MATLAB, R, and Python through different computing archi-
tectures such as high-performing laptops and high-power par-
allel processing clusters. One of the major objectives is to build
a path to efficiently and effectively identify a metamodeling
method that most suits data structures of varying complexity,
especially with increasing dimensionality and sensitivity of
the response surface. The basic foundation of the concept is
discussed in this paper using a simple scenario, and activi-
ties are being pursued to study other scenarios with varying
complexities that will be reported at the conference.

Section II describes the background of the problem. The
technical approach and implementation are discussed in Sec-
tion III and IV, respectively. Section V reviews the method-
ology. Results are given in Section VI. Finally, Section VII
summarizes the work.

II. BACKGROUND

Kleijnen and Sargent first introduced the concept of simu-
lation metamodel validation [14]. They define validation with
regards to a simulation and/or a metamodel as the substantia-
tion that a model within its domain of applicability possesses
satisfactory accuracy consistent with the intended applications
of the model. Relating accuracy to the intended application
addresses the question of metamodel sufficiency, which is a
subjective topic.

The accuracy of a metamodel is assessed based on a combi-
nation of minimizing the required computational expense and
maximizing the reliability or accuracy of the assessment. Based
on how an analyst would prioritize these criteria, a chosen
validation procedure may either sample additional runs from
the large-scale simulation or utilize the simulation data that
is already in hand. When generating additional data from the
large-scale simulation, predicted responses of the metamodel
are compared to the true responses using additional runs of
the original simulation within the design space applied to
calibrate the metamodel. Basic measures to be considered here,
as Kleijnen [14] suggests, are the coefficient of determination
R2 as well as an adjusted-R2 value, which accounts for the

problem of R2 always increasing as additional regression
coefficients are added. The root mean square error RMSE,
where

RMSE =

√∑m
i=1(yi − ŷi)2

m

and the maximum absolute error (MAX), where

MAX = max |yi − ŷi| , i = 1, ...,m

where ŷi is the predicted value at point i, yi is the true value
of the parameter being estimated at point i and m is the
number of sample points. These are descriptive measures for
understanding error across the design space designated for the
metamodel. These measures are reliable when the simulation
can be resampled to generate a large testing set, but as noted
above, this is not practical in many situations, especially when
considering very flexible families of metamodels [14].

Quite often, it is more efficient and practical for the analyst
to use existing simulation runs to avoid resampling on the
simulation model. In this practice, the simulation runs used to
calibrate the metamodel are reapplied for validation purposes,
as suggested by Laslett [15]. This includes the concept of p-
fold-cross-validation adaptation where the simulation data set
is split into p subsets with the metamodel being fit p times,
each time leaving out one of the subsets from training and
using the excluded set for computation of the error measure.
The leave-k out approach was pursued by the simulation meta-
modeling community and studied with different metamodel
techniques [16]. The leave-k out approach is a variation of
the p-fold cross-validation. Mitchell and Morris [17] proposed
leave-one-out cross-validation, where the left out subsets are
of size one.

The Bootstrap procedure [18] is a family of methods for
estimating the statistical accuracy of an error measure and is
applicable to simulation metamodeling. Kleijnen and Deflandre
[19] provide an adapted procedure for regression simulation
metamodels that does not assume normality to derive a R2

statistic and a lack-of-fit F statistic.

The Bootstrap method consists of resampling data points
with replacement to expand the simulation data to a very
large set of training and testing data. Various error estimates
can be computed on each of the n Bootstrap samples. The
error measure of interest is then averaged across the Bootstrap
samples.

As we are moving from a single personal computer to a
clustered simulation experimentation environment, we are in-
terested in a Bootstrapped standard error measure that involves
recalibration of the metamodel at each Bootstrap sample. This
gives insight into the sensitivity of the goodness-of-fit of the
metamodel family in addition to its standard error without
resampling of the large-scale simulation. In addition, this can
be coupled with a PRESS statistic computed through a leave-
one-out resampling procedure that gives insight into bias. Both
of these two error measures used in conjunction can provide
deep insight into the accuracy of the metamodel, which we
measure as a function of standard error and bias.

The drawback to this Bootstrapping approach for standard
error and PRESS computation involving repeated metamodel
recalibrations is extensive computational time. In most situa-
tions the precision of the Bootstrap standard error is dependent
on the number of Bootstrap samples drawn. The PRESS
statistic will be at least of the order of the number of design
points times the different number of metamodel classes that
are currently being considered (usually with a much greater
computational complexity). This computational time is further
increased when more complicated metamodel structures such
as Neural Networks or Stochastic Kriging are applied. We pro-
pose a method to parallelize the computations in this Bootstrap
method to reduce computational time especially for complex
systems analysis and avoid cumbersome simulation resampling
that arises due to scenario configuration or licensing issues
hindering parallelization of the running of the large-scale
simulation.

III. APPROACH

The standard error statistic is the measure of the stabil-
ity for an estimated metamodel. Unfortunately, in complex
metamodels with a large number of parameters, the standard
error takes the form of a large covariance matrix or even
covariance functional. To facilitate the interpretation of the
stability of the estimated metamodel, we propose a univaraite
summary statistic that captures the distance between two fitted
metamodels.

With the summary of the distance between two fitted
metamodels, we will proceed to use a Bootstrap algorithm to
estimate the expected distance between two fitted metamodels
using a specified number of simulation runs. Grossly speaking,
a Bootstrap algorithm works by drawing samples with replace-
ment from the original set of samples. The statistic is then fitted
into a new Boostrap sample. This process is repeated a large
number of times.

We assume that we have results from a large-scale sim-
ulation model generating data from a set of design points
{xi}ni=1. For the ith design point, we observe the results for k
simulations to fit a metamodel f0(xi), which approximates the
simulation at point xi. The simulation output at the ith design
point for the jth repetition is

yij = f0(xi) + εij

where εij are independent identically distributed random vari-
ables with a mean of zero and a common variance σ2

e . For
the current results from the simulations, denoted as Dnk =
{(yij , xi)}, we can estimate f0 with an estimation strategy,
e = Dnk 7→ m ∈M, i.e.m̂nk = e(Dnk)

We use two metrics to compute the accuracy of candidate
metamodels:

1) For two classes of metamodels, M1 and M2, for an
estimation strategy e, we would like to compare the
bias for the two candidate classes of metamodels.

2) To characterize the variance of m̂nk, we tend to refer
to var(m̂nk) as the stability of the estimator from the
class, M .

Regarding the first metric, we implement a PRESS statis-
tic, which is standardized by an ANOV A type estimator of
σ2. We will use a slightly modified version of the PRESS
statistic as defined in Allen [20]. This PRESS statistic takes
the form of

PRESS =
1

nm

m∑
i=1

n∑
j=1

(yij − f̂−i(xi))
2,

where f̂−i is the estimate of the true model within the
metamodel family that does not use the points associated with
the design point xi.

To solve the second problem, we implement a Bootstrap
estimate of the var(m̂nk).

IV. IMPLEMENTATION1

The PRESS and Bootstrap statistical calculations were first
implemented in MATLAB to perform evaluations of meta-
models. This application of these methods did not efficiently
test and evaluate metamodels for large datasets containing ten
thousand or more data points. The amount of time required
to perform computations of the statistics overshadowed the
usefulness of the scripts.

We then implemented PRESS and Bootstrap statistics in
Python and R. Additionally, the original MATLAB scripts
were updated to reflect best MATLAB practices in regards
to vectorization. All scripts were developed to read input data
files in standard CSV format. To further explore the limits of
the implementations, a parallel version of the Python script
were also developed. Each of these implementations used the
language’s specific nonlinear model fitting function. Options
were adjusted for all of the models to ensure the same tolerance
was being used in each implementation. Unnecessary looping
was avoided in all instances and each script was designed to
make use of the strengths and best practices of each language.

A. MATLAB Implementation

MATLAB’s function to fit nonlinear regression models is
the fitnlm function. The goal of fitnlm is to find values
for the parameters β that minimize the mean squared differ-
ences between the observed responses y and the predictions
of the model [21]. This function takes in a model function,
predictor and response values, and initial guesses for the values
of β. The algorithm used in this nonlinear model fitting tool
is the Levenberg-Marquardt least squares algorithm.

This application also used the feval function in MAT-
LAB to evaluate the model using a certain set of predictor
values. This function evaluates a given model using the input
arguments and produces the expected output values of the
function. Both the PRESS and Bootstrap implementations only
use a single loop to perform the iterations and computations.
All other computations are completed using vectorization.
These applications of the statistical methods were developed
to avoid unnecessary overhead.

1Scripts for model implementations can be provided on a case by case basis
by contacting the authors.

B. R Implementation

The standard version of R includes the Nonlinear Least
Squares (nls) function that computes the nonlinear least-
squares estimates of the parameters of a nonlinear model
[22]. This standard version of the model uses the Gauss-
Newton algorithm by default which has been proven to be
much quicker than the Levenberg-Marquardt algorithm [23]. In
order to maintain consistency between each implementation, an
alternate version of the nls function was used from the min-
pack.lm package. This package contains a function, nlsLM,
which uses the Levenberg-Marquardt algorithm. This function
uses a nonlinear model with variables and β parameters, data
that includes predictor and response values, and an optional
list of starting guesses for the β values. The nlsLM function
produces a fitted model object.

These executions of the PRESS and Bootstrap computa-
tions also use the predict function in R to evaluate the models
at specific predictor values. The predict function works with
fitted model objects in R to determine the predicted model
outcomes at defined values. The R scripts for the computations
also only use a single loop to perform the model fitting and take
advantage of vectorization in R to perform other calculations.

C. Python Implementation

The model fitting portion of the computations depends
on the Scipy library. Scipy’s optimization package provides
multiple commonly used optimization algorithms including
curve_fit which is the function used in this research.
The curve fitting function uses non-linear least squares to fit
a function, f to provided data. The algorithm used in this
function is the Levenberg-Marquardt algorithm [24] which
produces a set of β values that represent the model’s best fit.

The model fitting function also requires both the input of
a model function as well as predictor and response values.
The model function is implemented as a traditional function
in Python in a separate module. The initial guess for the
parameters is optional in this function, but the feature is
utilized to match the MATLAB implementation. The fitted
models are then evaluated using the original model function
with the predictor values and the computed β values.

D. Python Implementation with MPI4Py

Due to the embarrassingly parallel nature of this problem,
utilizing parallel techniques in Python is an obvious solution
to enhance the timing of the process. Both the Bootstrap and
PRESS computation scripts were altered to use the Message
Passing Interface (MPI) tool for Python, mpi4py, to parallelize
the scripts [25].

This version of the program distributes the model fitting
and evaluation required in a single cycle of the loop evenly
amongst multiple processors. This technique distributes the
workload and computational power needed across multiple
computing nodes, which has a significant impact on the time
needed to compute the overall statistics for large or complex
computations.

V. METHODOLOGY

All simulations were run on the same 64-bit Windows
7 laptop with an Intel i7 Processor which has four cores
and 8GB of RAM. The dataset used was output data from
a model simulating border crossings. This model uses three
independent predictor variables and generates a single response
value, referred to as the utility value.

Two hundred different desgin points were used for the
experiment with ten replications completed at each design
point. Results were gathered taking the average of three runs
of the analysis scripts.

Timing analysis was done using special profiling functions
specific to each language. MATLAB has a profiling function
that provides information on the running time of the script as
well as individual functions executed within the script. This
allows us to see which areas of the script are responsible
for any potential bottlenecks. Python has a similar profiling
function, cProfile which provides information on the total
running time as well as individual running times of child
functions. Finally, the R scripts were profiled using the Rprof
function, which times the execution of code between specified
start and ending points. Each of these profiling functions
produces comparable outputs and results which can be used
to compare each of the applications.

All of the profilers produce extremely detailed information
on all functions and child functions called in the scripts. Since
each profiler generates comprehensive data on each function
call, only pertinent information is displayed in the following
tables and charts. Non-crucial function calls have been omitted
from the profiling data represented in this paper.

Different nonlinear metamodels of increasing order were
used to fit the dataset. All of these models include an error
term ε. The first model, shown in Equation 1, is a second order
nonlinear model with interactions among the parameters.

f0(x) = β1x1 + β2x2 + β3x3 + β4x1x2 + β5x1x3

+ β6x2x3 + β7x
2
1 + β8x

2
2 + β9x

2
3 + ε

(1)

The next equations used to perform nonlinear fitting were
third order equations. Equation 2 is a third order equation
without interactions between the parameters.

f0(x) = β1x1 + β2x2 + β3x3 + β4x
2
1 + β5x

2
2

+ β6x
2
3 + β7x

3
1 + β8x

3
2 + β9x

3
3 + ε

(2)

Equation 3 is a more complex third order equation which
contains additional terms that represent interactions between
the different predictor values.

f0(x) = β1x1 + β2x2 + β3x3 + β4x1x2 + β5x1x3

+ β6x2x3 + β7x
2
1 + β8x

2
2 + β9x

2
3 + β10x

2
1x2

+ β11x
2
1x3 + β12x

2
2x1 + β13x

2
2x3 + β14x

2
3x1

+ β15x
2
3x2 + β16x1x2x3 + β17x

3
1 + β18x

3
2 + β19x

3
3 + ε

(3)

The final two equations used to perform the nonlinear
model fitting were of the fourth order. Equation 4 is another

basic equation without any terms interactions between the
parameters.

f0(x) = β1x1 + β2x2 + β3x3 + β4x
2
1 + β5x

2
2 + β10x

4
1

+ β6x
2
3 + β7x

3
1 + β8x

3
2 + β9x

3
3 + β11x

4
2 + β12x

4
3 + ε

(4)

Equation 5 is the most complex equation used in this
methodology and is a fourth order equation that contains
additional terms which represent interactions between the
different predictor values.

f0(x) = β1x1 + β2x2 + β3x3 + β4x1x2 + β5x1x3

+ β6x2x3 + β7x
2
1 + β8x

2
2 + β9x

2
3 + β10x

2
1x2

+ β11x
2
1x3 + β12x

2
2x1 + β13x

2
2x3 + β14x

2
3x1

+ β15x
2
3x2 + β16x1x2x3 + β17x

3
1 + β18x

3
2

+ β19x
3
3 + β20x

2
1x2x3 + β21x1x

2
1x3 + β22x1x2x

2
3

+ β23x
2
1x

2
2 + β24x

2
1x

2
3 + β25x

2
2x

2
3 + β26x

3
1x2

+ β27x
3
1x3 + β28x

3
2x1 + β29x

3
2x3 + β30x

3
3x1

+ β31x
3
3x2 + β32x

4
1 + β33x

4
2 + β34x

4
3 + ε

(5)

These metamodels functional forms were chosen because
they vary in complexity for solving the equations. The second
order model is fairly simple in nature and is computationally
simple compared to the fourth order model with interactions.
This sampling of models allows us to also examine which of
the tools has the ability to scale up not only in dataset size but
also in metamodeling complexity.

VI. RESULTS AND DISCUSSION

Results gathered from testing both the PRESS and Boot-
strap computations can be seen in Table I and Table II. These
results show the average running time for each computation
using each of the models reviewed in Section V. Results are
also displayed in Figure 1 and Figure 2.

These results show that MATLAB has the worst perfor-
mance across all of the tested implementations. The MATLAB
scripts consistently underperformed compared to the R and
Python applications. This can be further explored by looking
into the profiling information on the PRESS and Bootstrap
statistics. The example shown in Table III is for the MATLAB
computation of the PRESS statistic using the third order model
with interactions, Equation 3. This profiling information only
shows the top level functions called in the model.

In the MATLAB terminology for profiling, Total Time is
the total amount of time spent inside of a function and all of its
child functions. These results show that the entire MATLAB
function, fitnlm is inherently slow and detrimental to the
performance of the MATLAB script. A possible explanation
for this impediment could be the way this function handles
the model input formula. This equation formula is read in as
a string and must be parsed through and deconstructed each
time the function is called.

The performance of the R scripts were much better than the
MATLAB performance for every testing scenario and similar
in timing results to the Python and parallel Python results.
A better understanding of the performance of the R script is

MATLAB R Python MPI − 2 MPI − 4

4

32

256

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Equation Number

tim
e

(s
)

Order

[1] Second

[2] Third

[3] Third w/ Interactions

[4] Fourth

[5] Fourth w/ Interactions

PRESS Statistic Timing Results (Log Scale Base 2)

Fig. 1. Timing analysis for different levels of complexity and implementation of the PRESS statistic. Combined results from the parallel processing applications
in Python show the best results in all cases. The computation in R is competitive while MATLAB has an inferior performance. The horizontal axis shows the
equation numbers referenced in Section V.

MATLAB R Python MPI − 2 MPI − 4

0.25

2.00

16.00

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Equation Number

tim
e

(s
)

Order

[1] Second

[2] Third

[3] Third w/ Interactions

[4] Fourth

[5] Fourth w/ Interactions

Bootstrap Timing Results (Log Scale Base 2)

Fig. 2. Timing analysis for different levels of complexity and implementation of the Bootstrap statistic. All Python methods show promising results, but the
computation in R produces the best overall outcomes. MATLAB has inferior performance for every tested equation. The horizontal axis shows the equation
numbers referenced in Section V.

Equation Nonlinear Model MATLAB (s) R (s) Python (s) MPI Python (2 Cores) (s) MPI Python (4 Cores) (s)
1 Second Order 28.481 1.147 0.811 0.744 1.015
2 Third Order 31.315 1.260 0.999 0.873 1.011
3 Third Order with Interactions 84.907 2.120 2.062 1.488 1.686
4 Fourth Order 45.222 2.140 1.902 1.426 1.394
5 Fourth Order with Interactions 226.722 8.867 12.554 8.887 7.825

TABLE I. TIMING COMPARISON FOR PRESS STATISTIC COMPUTATION IN MATLAB, R, PYTHON AND PARALLELIZED PYTHON.

Equation Nonlinear Model MATLAB (s) R (s) Python (s) MPI Python (2 Cores) (s) MPI Python (4 Cores) (s)
1 Second Order 1.540 0.053 0.479 0.587 1.019
2 Third Order 1.698 0.073 0.477 0.578 1.227
3 Third Order w Interactions 4.574 0.140 0.577 0.660 1.279
4 Fourth Order 2.538 0.167 0.517 0.601 1.279
5 Fourth Order w Interactions 13.063 0.560 1.127 1.336 1.652

TABLE II. TIMING COMPARISON FOR BOOTSTRAP STATISTIC COMPUTATION IN MATLAB, R, PYTHON AND PARALLELIZED PYTHON.

Function Calls Total Time (s) % Time
fitnlm 200 94.929 98.8
feval 200 1.001 1.0
csvread 2 0.044 0.0
mean 1 0.000 0.0

TABLE III. PROFILING INFORMATION ON MATLAB PRESS
STATISTIC.

Function self.total (s) % Time
nlsLM 1.76 77.19
predict 0.10 4.39

TABLE IV. PROFILING INFORMATION ON R PRESS STATISTIC.

achieved by looking into the profiling data in Table IV gathered
by Rprof using Equation 3.

In the Rprof tool, self.total is the amount of time spent
in the function and its callees. The profiling information from
the R script shows that the nonlinear model fitting function,
nlsLM, takes up nearly 78% of the running time of the script.
This is a much smaller and less significant portion of time
compared to the MATLAB script.

All versions of the Python scripts performed well in the
testing of the PRESS and Bootstrap statistics. All Python
scripts outperformed the MATLAB scripts and these scripts
were executed at a comparable speed to the R scripts. More
information can be found on the intricacies of the script
executions in the profiling data in Table V.

The cProfile tool reports on the number of calls made
(nCalls) and the cumulative time (cumtime), which is the

Python MPI Python (2 Cores) MPI Python (4 Cores)
Function nCalls cumtime (s) % Time nCalls cumtime (s) % Time nCalls cumtime (s) % Time
curve fit 200 1.557 76.436 100 0.923 59.978 50 0.641 44.391
genfromtxt 2 0.038 1.865 2 0.054 3.450 2 0.066 4.571
evalModel 200 0.032 1.865 100 0.020 1.278 50 0.012 0.931

TABLE V. PROFILING INFORMATION FOR PRESS STATISTIC COMPUTATION IN PYTHON AND PARALLELIZED PYTHON.

amount of time spent in each function and all sub-functions.
These profiling results show a close resemblance to the R
timing output. Profiling information is also included in Table V
on the Parallelized Python code for simulations run on 2 and
4 cores. The results here do show that the computational time
is well distributed.

Additional work to compile more design points for the
sample model is ongoing. Future work should be able to
provide results of these techniques with much larger datasets.
These larger datasets will be able to more completely test
the capabilities and limitations of the PRESS and Bootstrap
statistic implementations.

VII. SUMMARY

Overall, the timing results show that the MATLAB model
fitting implementations of both the PRESS and Bootstrap
statistics are inherently less efficient than their R and Python
counterparts. These results show that the MATLAB approach
is an entirely inefficient application of these two statistical
computations.

Upon looking deeper into the MATLAB profiling informa-
tion, we realized that the MATLAB nonlinear fitting function
reads in a model in string format. Therefore, a major bottleneck
in this process is converting this string into a proper, numerical
function. This becomes especially computationally intensive
when the model or function being used in the nonlinear model
fitting implementation is particularly long. According to the
MATLAB documentation, there is an alternate way to use
fitnlm function [26], but this method has not yet been
evaluated for this research.

For the PRESS statistic computation, the Python and R
scripts produce similar timing results. It can be seen in Table I
that the Python implementation outperforms the R version in
all instances except for the model fitting with Equation 5.
While the serial Python implementation did not outperform the
R, the parallel versions had better overall performance than the
serial version. The MPI Python version running on two cores
performed better than the Python application for all models
and was only slightly slower than the R implementation for
the fourth order model with interactions. The MPI Python
application with four cores had worse performance than the
serial Python for the two simplest models, but as the models
became more complex, the value of the multi-core application
is apparent.

The Bootstrapping implementations are less computation-
ally intensive and have a faster running time, which makes it
more difficult to distinguish differences in performance across
the different implementations. The MATLAB application is
still consistently the slowest version of the code. All of the R
implementations of the model fitting code have the best timing
performance followed closely by the serial Python code. Both
the two and four core MPI Python implementations have a

slower running time than the serial Python version. This lack
of improvement in speed is likely due to the already quick run-
ning time of the script. With parallel programming, overhead
is required to launch the program on multiple processors and
perform communication. Since the script already has such a
quick run time, no improvement can be seen from parallelizing
the code.

Another possible reason for the parallel Python scripts to
perform less than expected in both the PRESS and Bootstrap
statistics is the additional time required to perform the reading
in of data files. This slowdown can be seen in Table V
for the genfromtxt function call, which is responsible for
reading in the data. This increase in time to read in files is
a common side effect with parallel programming, only one
of the processors can access and read the data file at a time,
which leads to a bottleneck in the file input portion of the
script. A possible alternate approach to this issue would be
to only have the root node read in the data files and then
broadcast this information to the rest of the nodes. This might
be a good potential solution for smaller datasets but would not
be a viable option for large amounts of data. Another way to
avoid this bottleneck would be to run the parallel scripts on
separate machines with distributed memory. This would also
solve the problem of all processors trying to read the same file
at once.

Overall, this study on the different implementations of the
PRESS and Bootstrap statistics found Python to be the optimal
choice for performing these computations for large, computa-
tionally complex datasets. The serial Python implementation
was able to achieve results comparable to the statistical soft-
ware, R. Like R, Python is easily accessible and has a permis-
sible free software license. Python is easily portable and easily
parallelized using MPI techniques improved performance.

ACKNOWLEDGMENT

This work is supported by the Systems Engineering area
in the MITRE Innovation Program. Thanks are due to Marie
Francesca for her continued support and many insightful
suggestions.

REFERENCES

[1] “High performance computing,” http://space.mit.edu/research/high-
performance-computing, accessed: 2014-08-13.

[2] J. C. Cuevas-Tello, “High performance computing
on astrophyics with artificial intelligence algorithms,”
http://ciep.ing.uaslp.mx/publicaciones/592012Paper, accessed: 2014-
08-13.

[3] I. G. Francis and C. Drugan, “Groundbreaking astrophysics acceler-
ated,” HPC Source, pp. 9–12, February 2013.

[4] L. Hwang, T. Jordan, L. Kellog, J. Tromp, and R. Willemann, “Advanc-
ing solid earth system science through high performance computing,”
February 2013.

[5] R. Stevens, “Biology and high-performance computing,” UK HPC
Users Meeting, September 2002.

[6] S. Khaitan and A. Gupta, High Performance Computing in Power and
Energy Systems. Springer, September 2013.

[7] A. Biberman and K. Bergman, “Optical interconnection networks for
high-performance computing systems,” Reports on Progress in Physics,
vol. 75, 2012.

[8] Intel, “Big data meets high performance computing,” 2013. [Online].
Available: http://www.intel.com/content/www/us/en/software/intel-
lustre-big-data-meets-high-performance-computing.html

[9] S. L. Rosen and S. K. Guharay, “A case study examining the impact
of factor screening for neural network metamodels,” Proceedings of the
2013 Winter Simulation Conference, ed. R. Pasupathy, S.-H. Kim, A.
Tolk, R. Hill and M.E. Kuhl, pp. 486–496, 2013.

[10] E. Bonaneau, “Big data and the bright future of simulation,” in
Proceedings of the 2013 Winter Simulation Conference, 2013.

[11] B. Nelson, “The simulation curmudgeon,” in Proceedings of the 2013
Winter Simulation Conference, 2013.

[12] R. Barton and M. Meckesheimer, “Metamodel-based simulation opti-
mization,” Handbook in OR & MS, vol. 13, 2006.

[13] G. Klir, “Review of model-based systems engineering,” International
Journal of General Systems, vol. 25, pp. 179–180, 1996.

[14] J. Kleijnen and R. Sargent, “A methodology for the fitting and valida-
tion of metamodels in simulation,” European Journal of Operational
Research, pp. 120–131, 2000.

[15] G. Laslett, “Kriging and splines: An empirical comparison of their
predictive performance in some applications,” Journal of the American
Statistical Association, pp. 391–400, 1994.

[16] M. Meckesheimer, A. Booker, R. Barton, and T. Simpson, “Computa-
tionally inexpensive metamodel assessment strategies,” AIAA Journal,
pp. 2053–2060, 2002.

[17] T. Mitchell and M. Morris, “Bayesian design and analysis of computer
experiments: Two examples,” Statistica Sinica, pp. 359–379, 1992.

[18] B. Efron and R. Tibshirani, An Introduction to the Bootstrap. Chapman
and Hall, New York, NY, 1993.

[19] J. Kleijnen and D. Deflandre, “Validation of regression metamodels
in simulation: Bootstrap approach,” European Journal of Operational
Research, pp. 120–131, 2006.

[20] D. M. Allen, “The relationship between variable selection and data
augmentation and a method for prediction,” Technometrics, vol. 16, pp.
125–127, 1974.

[21] MATLAB, version 2013b. Natick, Massachusetts: The MathWorks
Inc., 2013.

[22] D. M. Bates and D. Watts, “Nonlinear least squares,”
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/nls.html ,
accessed: 2014-08-13.

[23] Y. Jianchao and C. Chern, “Comparison of newton-gauss with
levenberg-marquardt algorithm for spapce resection,” 22nd Asian Con-
ference on Remote Sensing, November 2001.

[24] E. Jones, E. Oliphant, and P. Peterson, “Scipy: Open source scientific
tools for python,” http://www.scipy.org/, accessed: 2014-08-13.

[25] L. Dalcin, “Mpi for python,” http://pythonhosted.org//mpi4py/, ac-
cessed: 2014-08-13.

[26] MATLAB, “fitnlm: Fit nonlinear regression model,”
http://www.mathworks.com/help/stats/fitnlm.html, accessed: 2014-
10-24.

