

Flüssigmetalle als Wärmeträgermedium für CSP -Ein neuer Anlauf

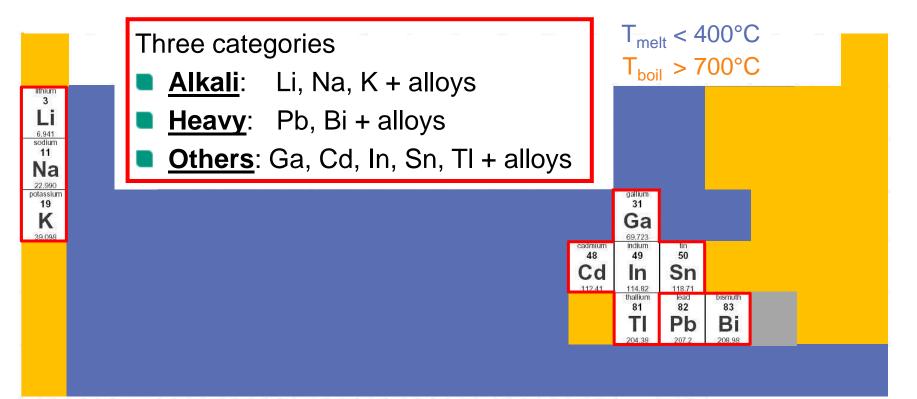
Thomas Wetzel, Luca Maroco, Julio Pacio und KALLA-Team

Institut für Thermische Verfahrenstechnik, Institut für Kern- und Energietechnik

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Requirements for a heat transport fluid (HTF)



Extended temperature range

- **Low** melting point (to avoid or reduce auxiliary heating)
- **High** upper limit in view of chemical stability
- **High thermal conductivity:** large heat transfer as single-phase liquid
- **Large heat capacity** would allow direct thermal storage in the HTF
- Low/moderate vapor pressure
- Low/moderate viscosity for pressure drop
- Compatible with structural materials (e.g. steel) at high temperatures
- No safety risk
- Operational experience
- Low/moderate costs
- No existing HTF fits all the requirements
- Liquid metals are promising in some aspects, particularly upper T-limit and heat transfer capability

Which LMs? Screening of candidate materials

Forseable advantages and limitations of LMs

Sn

232

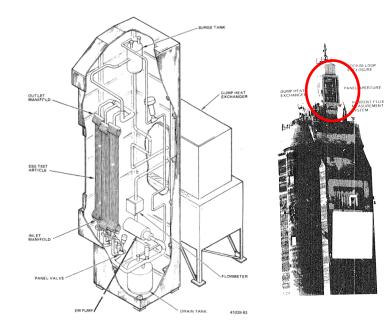
2687

32.7

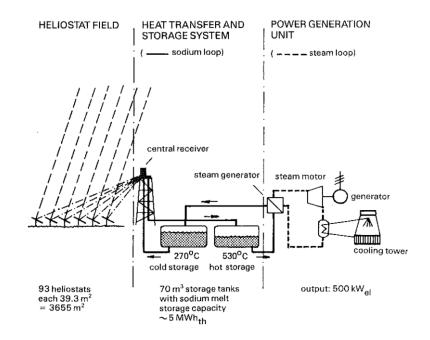
1815

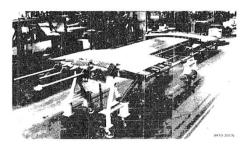
Fluid	Air	He	S. Salt	Na	LBE			
Tmin, °C	<r.t.< td=""><td><r.t.< td=""><td>220</td><td>98</td><td>125</td><td></td></r.t.<></td></r.t.<>	<r.t.< td=""><td>220</td><td>98</td><td>125</td><td></td></r.t.<>	220	98	125			
Tmax, °C	n.a.	n.a.	565	883	1553			
λ, W m ⁻¹ K ⁻¹	0.06	0.32	0.55	64.9	14.9			
ρ*c _p , kJ m ⁻³ K ⁻¹	0.2	3.0	2675	1042	1415			

Physical properties evaluated at 1 bar, 550°C


Heat transfer coefficients at 750°C, 1 bar, $u=5 \text{ m s}^{-1}$, D = 15 mm

Fluid	Air	He	S. Salt	Na	LBE	Sn
α, W m ⁻² K ⁻¹	20	105	-	47724	24676	38572


LMs (Na) were tested in CSP in the 1980s

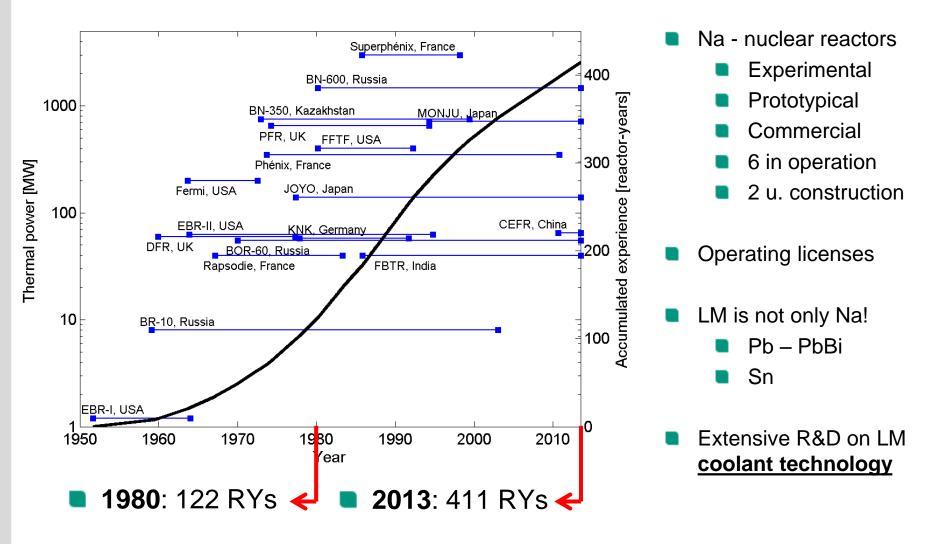

USA: Sandia CRTF

Europe: PSA (E, D)

Only receiver750 liters70 hours

- Complete plant
 - 70 000 liters

5 years


Very good thermalhydraulic results

Test facility	CRTF (US)	PSA (E)	PSA (E)		
Туре	External	Cavity	External		
Developer	Rockwell Intl. (US)	Interatom (D)	Samprogetti (I)		
Manufacturer	Rockwell Intl. (US)	Sulzer (CH)	Tosi Industriale (I)		
Test period	Oct1981 – Mar1982	1981-Apr 1983	1983-1986		
Power, MW	2.5	2.5	up to 3.5		
Peak heat flux, MW m ⁻²	1.53	1.4	2.5		
Measured efficiency	90-96%	88%	92%		
T inlet/outlet, °C	288 / 593	270 / 530	270 / 530		
Aperture area, m ²	-	9.7	opped!		
Aperture area, m ² - 9.7 Absorber area, m ² And Still: Development stopped! 8.32					
11151111a1 103353, NVV 👝			230		
Tube diameter, mm	or 28 years r	nletely?	14		
Tube diameter, mm Tube wall thickness, mS	topped com	?	1.0		
Tube material	316 SS	316 SS	316 SS		

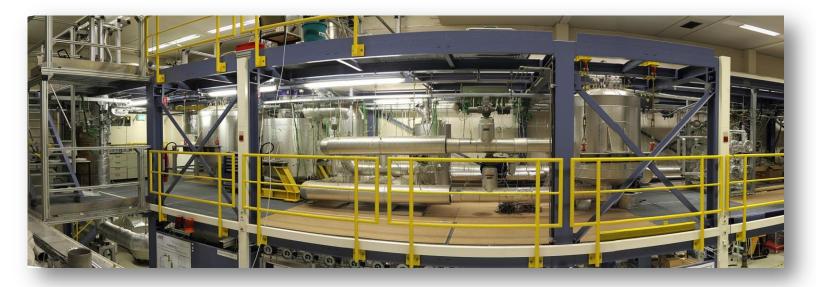
LMs since the 1980's: much more experience

LM science, experience and know-how at KIT

- Lead, Lead-Bismuth, Indium-Gallium-Tin, Sodium, Sodium-Potassium, Tin
- Experiments and Simulation
- Material issues (corrosion protection)
- Experience on liquid metal technology: pumps, heat exchangers, instrumentation, operation and control safety
- > 30 years experience, leading partner in European LM research

From laboratory scale...

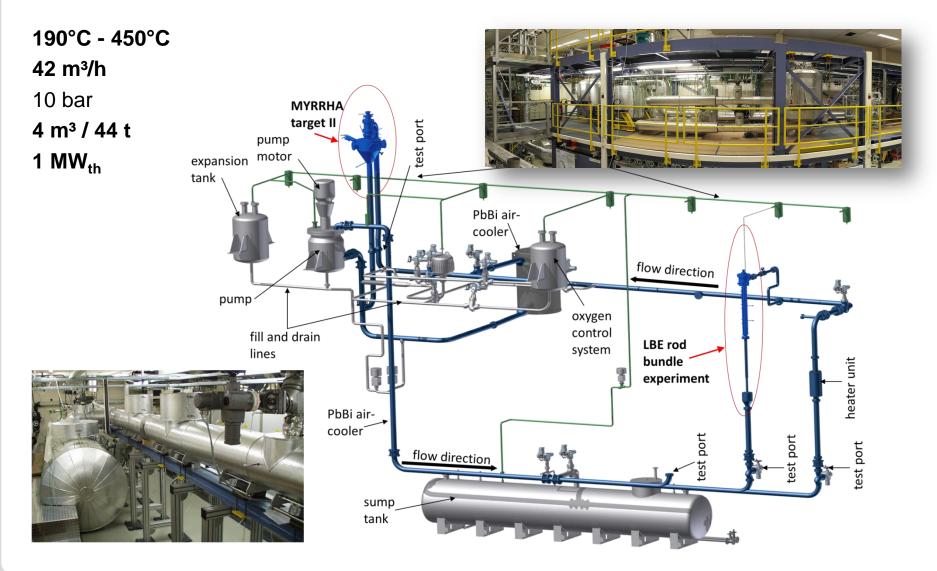
COSTA: COrrosion test stand for STagnant liquid lead Alloys


- Operative since 1997
- Pb, Pb-Bi, Sn
- Equipped with O₂-control
- Influence of protection layers and coatings on corrosion

- CRISLA: Creep-to-Rupture In Stagnant Lead Alloys
- Operative since 2007
- Pb or PbBi at max. 650°C
- Equipped with O₂-control
- Impact of liquid-metal environment on creep performance

... to prototype dimensions

KALLA: KArlsruhe Liquid Metal LAboratory


- Operative since 2002
- PbBi loops THESYS and THEADES (No. 1 in Europe), Na loop ALINA, InGaSn loop GALINKA, corrosion loop CORRIDA, etc.
- Research on liquid metal (low Pr-Number) thermal hydraulics, for both bounded and free surface flows

KASOLA: KArlsruhe SOdium LAboratory

- Operative in 2014
- Two versatile test sections
- Supporting facilities (HEMCP)
 - ATeFa: AMTEC Test Facility
 - SOLTEC: SOdium Loop for liquid metal TEChnology

Example: THEADES LBE loop at KALLA

Liquid Metals (LM) for CSP: Research topics

- LM compatible CSP system components:
 - Receivers, pumps, heat exchangers, instrumentation, …
 - SOMMER@KALLA under construction
- **Material** compatibility at high temperatures
 - Pb/PbBi > 550 °C: corrosion prevention ...
 - Na > 700 °C: Filtering and cleaning
 - Sn: Graphite, Molybdenum, ...?
- Alkali Metal Thermal Electric Conversion **AMTEC** as topping system?
- Thermal **storage** for 24/7 operation
 - Direct storage unlikely due to high price and low heat capacity
 - Indirect storage with exchangers etc. are needed

TELEMAT 750 °C corrosion

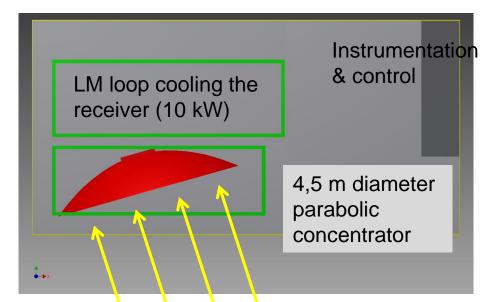
facility just completed

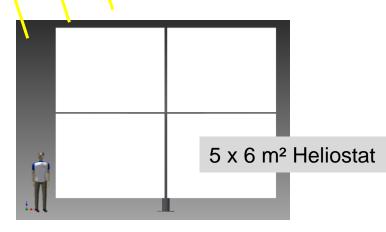
Ongoing R&D activities in Germany

- HELMHOLTZ Alliance LIMTECH 2012 2017
- HELMHOLTZ Research Program 2015 2019
- DLR and KIT combining their specific expertise
 - KIT: Coolant technology, for LBE, tin and sodium
 - DLR (German Aerospace Center): solar-specific know-how

Main objectives

- Evaluation of utility-scale LM-CSP plants, up to LCOE
- Materials and technology (re)development
- Receiver and system tests at small scale (~10 kW) until 2016
- Receiver tests at pilot scale (~ 100 kW) until 2019





LIMTECH Alliance

SOMMER @ KALLA

SOlar furnace with Molten MEtal cooled Receiver

Vielen Dank für Ihre Aufmerksamkeit!