HELISOL®
- ein Siliconöl basierter Wärmeträger für CSP Kraftwerke

19. Kölner Sonnenkolloquium, 2016 07 06

Erich Schaffer, Wacker Chemie AG
Dr. Dersch (DLR), Dr. Dörrich (Wacker Chemie AG), Herr Hilgert (DLR), Dr. Jung (DLR)
Content

- General introduction Wacker Chemie AG
- HELISOL® 5A
 - Requirements, testing methods, properties
 - Safety aspects
 - Economic assessment & Proof of Concept
Over 100 Years of Success

Wacker Chemie AG
- Founded in 1914 by Dr. Alexander Wacker
- Headquartered in Munich

WACKER Group (2015)
- Sales: €5.30 billion
- EBITDA: €1.05 billion
- R&D: €175 million
- Investments: €834 million
- Employees: 16,972
A Well-Balanced Portfolio

Sales 2015

<table>
<thead>
<tr>
<th>Division</th>
<th>Sales 2015 (in million*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siltronic</td>
<td>€931</td>
</tr>
<tr>
<td>WACKER SILICONES</td>
<td>€1,943</td>
</tr>
<tr>
<td>WACKER POLYMERS</td>
<td>€1,186</td>
</tr>
<tr>
<td>WACKER POLYSILICON</td>
<td>€1,064</td>
</tr>
<tr>
<td>WACKER BIOSOLUTIONS</td>
<td>€197</td>
</tr>
</tbody>
</table>

Group Sales

Total Divisional Sales (incl. internal sales)

- Group Sales: €5,296 million
- Total Divisional Sales: €5,321 million**

* Including internal sales
** Balance of other / consolidation € -25 million
Content

- General introduction Wacker Chemie AG
- HELISOL® 5A
 - Requirements, testing methods, properties
 - Safety aspects
 - Economic assessment & Proof of Concept
HELISOL® 5A: a new silicone based HTF developed for Concentrated Solar Power (CSP)

Benchmark HTF: Biphenyl / Diphenyl oxide (BP/DPO)
Maximum process temperature: 400°C

Higher process temperature
→ higher efficiency
→ lower LCOE (Levelized Cost of Electricity)

HTF requirements for CSP:
- High thermal stability
- Low temperature pumpability
- Good heat transfer
- Low volume expansion
- Low vapor pressure
- Low viscosity
- No critical degradation products
- Low toxicity
- Low fire risk
- Low cost
Si-HTF: A public funded project in order to develop and characterize a silicone based HTF

TOPIC
- Silicone based salts
- HTF development
- Evaluation of physical & chemical properties
- Performance simulation
- Profile of requirements
- Assessment of the results

TASKS
- Development, synthesis & characterization of Si-Salts
- Project management
- Si-HTF development & production
- Basic evaluation of heat stability
- EHS analysis (critical reactions, safety evaluation (TÜV-Nord))
- Evaluation of physical data @400°C (vapor pressure, density, viscosity, Cp….)
- Thermal stability & durability
- Evaluation of critical reactions
- Characterization of gas formation (H₂, CH₄)
- Process simulation → economic evaluation
- Assessment
 - technical
 - economic

Supported by:

[Image of logos and text: Federal Ministry for Economic Affairs and Energy, on the basis of a decision by the German Bundestag]
Differences between HELISOL® 5A and BP/DPO

BP/DPO eutectic mixture

- 25-28% BP, 72-75% DPO
 (Diphyl, Dowtherm A, Therminol VP1)

- Working temp.: 60 to 400 °C
 Freeze Point: 12 °C → freeze protection

HELISOL® 5A

- HELISOL® 5A is a low viscosity polydimethylsiloxane, a multi-component mixture of molecules with various molecular weights

- Working temp.: -40 to 425 °C
 Freeze Point: -65°C

BP/DPO eutectic mixture diagram:

- DPO
- BP

HELISOL® 5A diagram:

- large molecules
- small molecules

Differences between HELISOL® 5A and BP/DPO
HELISOL® 5A offers an outstanding working temperature

Longterm stability

![Graph showing viscosity over time at 400°C and 425°C for HELISOL® 5A and BP/DPO.]

Degradation after 1000 h

- **BP/DPO (400°C, 1000 h)** → 0.85 wt.%
- **HELISOL® 5A (425°C, 1000 h)** → 0.12 wt.%
Estimation of the degradation rate of HELISOL® 5A and reworking concept

Degradation rate

- Substitution rate to be evaluated: 1-2% HTF/a @ 430°C
- Exchange rate depends on the maximal tolerable viscosity

Reworking Concept

- Effect based on equilibration and dilution
- Viscosity is kept constant
- No Ullage system needed for viscosity control
Comparison of density and vapor pressure

Density @ 25°C

- HELISOL® 5A : 0.92 g/mL @ 25°C
- BP/DPO : 1.06 g/mL @ 25°C
- Water : 1.00 g/mL @ 25°C

- Oil separator can be used for HELISOL® 5A only

Vapor Pressure

- HELISOL® 5A shows a higher pressure level which has to be considered
Comparison of heat capacity and hydrogen formation

Heat capacity

- The heat capacity of HELISOL® 5A is around 10% lower compared to BP/DPO
- Advantages in the heat transfer at lower temperatures

Hydrogen formation

- Equal amounts of H₂ at 1300 h
- Lower hydrogen formation expected with HELISOL® 5A for long term
Corrosion test DIN EN ISO 2160 showed no significant impact. HELISOL® 5A does not show any fouling effects.

- Corrosion of the copper stripe (3 h/100 °C): grade 1a
- Corrosion of the copper stripe (6 h/100 °C): grade 1a
- Corrosion of the copper stripe (24 h/100 °C): grade 1b

- Test specimen showed almost no change of the surface after testing

No fouling / carbonization effects have been seen with HELISOL® 5A.
Content

- General introduction Wacker Chemie AG
- HELISOL® 5A
 - Requirements, testing methods, properties
 - Safety aspects
 - Economic assessment & Proof of Concept
Safety assessment – fire tests at DMT and TÜV-Nord

Flammability in contact with hot surfaces
ISO 20823

HELISOL® 5A:
self ignition at 475°C
($T_z \sim 367°C$…. DIN EN 14522)

CSP-Loop $\ll 475°C$

Fire test in a heating furnace

HELISOL® 5A:
no self ignition @ 250-430°C

rock wool + HELISOL® 5A:
no self ignition

rock wool + BP/DPO:
no self ignition

Wickflame persistence
ISO 14935

HELISOL® 5A:
combustion products (SiO₂) form protective barrier
\Rightarrow fire stops burning automatically

BP/DPO:
a lot more reactive
\Rightarrow fire does not stop burning automatically
Spray ignition test
ISO 15029

- **Distance**: 4m
- **Afterflame time**: 3-4 sec.
- **Ignition in the area of the nozzle**
- **Fire area:** HELISOL® 5A: ~1m
- **Fire area** BP/DPO: ~2-3m, ➔ more reactive

Simulating of leakages in pipes at 430°C

- **HELISOL® 5A**: no self ignition - neither direct in air nor in insulation

Simulating of leakages at 430°C with ignition source

- **HELISOL® 5A**: pyrotechnics have been burned in a distance of 5m, 2m, 1m from the exposure point
 ➔ no self ignition
HELISOL® 5A – reaction with solar salt

Measurement: DSC (N\textsubscript{2}) of mixtures of HTF and solar salt (60/40 wt.-% Na/K-nitrate)

Summary:

- Onset temperature of the HELISOL® 5A is more than 100°C above the operation temperature (100 K rule)
- Heat of combustion (\(\triangleq\) total oxidation \(\triangleq\) max. exothermicity) of Si-HTF is approx. 20% lower than that of BP/DPO

HELISOL® 5A is less critical than BP/DPO in combination with solar salt
HELISOL® 5A – combustion products are not classified as hazardous

Summary:

- Primary particles (10–30 nm) form aggregates (>100 nm), which combine to form agglomerates (some µm in diameter).
- X-Ray (XRD) does not show crystalline structures
- The combustion products have a high similarity to synthetic amorphous silica (SAS)
- SAS are not classified as hazardous
Content

- General introduction Wacker Chemie AG

- **HELISOL® 5A**

 Requirements, testing methods, properties

 Safety aspects

 Economic assessment & Proof of Concept
HELISOL® 5A enables lower LCOE

- Reduced costs TES
- No Ullage system needed for viscosity control
- No freeze protection
- Higher vapor pressure

- No recirculation for freeze protection
- Easier maintenance
- Less pump energy (low viscosity)
- Shorter start up period
- Lower degradation/exchange rate @ same temp.
- Lower H2 generation
- No fouling

\[
LCOE = \frac{\text{CRF} \times \sum \text{CAPEX} + \sum \text{OPEX}_\text{annual}}{\text{Electricity}_\text{annual}}
\]

Working temp.: \(-40°C \text{ to } 430°C\)
EHTF: \(60°C \text{ to } < 400°C\)

CRF: Capital recovery factor (Annuitätenfaktor)
HELISOL® 5A enables a reduction of the LCOE of ~ 5%

Restrictions:
- Calculation is based on LCOE calculation in Guadix (E).
- Solarfield- and storage size are based on minimal LCOE.
- Specific solarfield costs are higher...
- Specific costs of the TES are lower...

Conclusion:
- HELISOL® 5A offers advantages over commonly used HTF`s
- in terms of applicability for HELISOL® 5A in CSP plants no hindering issues were found
SITEF: A public funded project (SOLAR-ERA.NET) at the PSA (2016-2017)

Proof of Concept / Qualification of HELISOL® 5A at 425°C and beyond

“PROMETEO“ LOOP

by courtesy of CIEMAT

<table>
<thead>
<tr>
<th>EPC, CSP-Developer</th>
<th>Component Suppliers</th>
<th>Ownership, operation</th>
<th>Certifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering /Upgrade:</td>
<td>REPAS: Senior Flexonics SF</td>
<td>CIEMAT CI</td>
<td>Lab analysis: DLR</td>
</tr>
<tr>
<td>TSK-Flagsol FS,</td>
<td>Receiver: Rieglass</td>
<td>technoeconomic evaluation: DLR, FS</td>
<td></td>
</tr>
<tr>
<td>CIEMAT CI,</td>
<td>HTF: Wacker WA</td>
<td>Risk evaluation: TN, DLR, FS, WA</td>
<td></td>
</tr>
<tr>
<td>TÜV-Nord TN,</td>
<td></td>
<td></td>
<td>external evaluation: RWE</td>
</tr>
<tr>
<td>DLR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Early Operation @ 400°C: no limiting issues identified so far

SITEF project is funded by the governments of Spain and Germany
Protarget AG is used to work with HELISOL® 5A already

Micro CSP Plant in Bad Aibling
- Operating since end of 2012
- 570 m² parabolic trough
 250 kW nominal, 320 kW peak
 operating temperature: 300°C

„EDITOR“ Project in Cyprus
- Funded by: EU/BMWi
- Operating temperature: 430°C
- Time frame:
 01.2016 → plant commissioning 01.2017
- Goal: supply of process steam to an orange juice company, proof of dispatchability
Royal Tech (CN) is currently testing HELISOL® 5A beyond 400°C

key findings / issues:

- 600m loop with 4 SCAs located in Inner Mongolia
- Typical configuration similar to Spain’s PTC power plants
- Operating temperature up to 430°C
- Similar operating behavior to organic oil
- Low viscosity under high temperature need to be considered to avoid leakage

(by courtesy of Royal Tech)
With HELISOL® 5A it is possible to realize a parabolic trough plant with a working temperature above 400°C

The authors would like to thank the German Federal Ministry of Economic Affairs and Energy for the funding of the projects Si-HTF and SITEF and their cooperation partners.