Solar particle technology for high temperature process heat

Dr. Lars Amsbeck
Managing Director | HelioHeat GmbH

Company

Founded in 2017 as DLR spin-off; based in Offenburg, Germany

Team: 6 engineers and 1 economist

Core technology: Centrifugal Particle Receiver

Problem

74%

of total energy demand in industry is needed for **heat**

NO

energy technology can economically deliver renewable heat around-the-clock

48%

of total heat demand in industry is needed for **high-temperature heat**

NO

energy technology is economically available for renewable hightemperature heat

Source: IEA (2019), CO₂ Emissions from Fuel Combustion

Sonnenkolloquium 2021 // HELIOHEAT

Our solution:

A renewable energy system using ceramic particles as high temperature heat carrier and storage material

Particle system for Concentrating Solar Power plants

Receiver prototype testing at Solar Tower Jülich

PEGASUS receiver (first receiver delivered by HH)

Before delivery

Installed at Synlight, Jülich, Germany

HiFlex: Pre-commercial CSP plant demonstrating 24/7 delivery of energy for pasta drying

Quantis

HiFlex Status

Tower layout completed

ENAC (Italian flight authority) permitting obtained

Further permitting ongoing, preliminary positve feedback

HAZOP on the way

Expected groundbreaking end 2021/begin 2022

Expected costs: methodology

Return on Investment =
$$\frac{\text{net profit}}{\text{investment costs}}$$

$$\frac{S}{C_0} = \frac{(1 + \text{ROI})^t \cdot \text{ROI}}{(1 + \text{ROI})^t - 1}$$

S	Annual savings in €/yr,	$S = C_f \cdot P - C_o$
U	7 tilliaai satiilgs iii e /	$\mathbf{b} - \mathbf{c}_I$

 C_0 Total investment in \in

t Financing period in yr

ROI Return on investment

C_f Fuel costs in €/MW_{th}

P Annual power generation⁺ in GW_{th}/yr [1]

C_e Annual expenses* in €/yr

⁺ Amsbeck et al., SolarPACES 2014

^{*} include O&M, insurance and parasitic costs

Expected costs: main assumptions

	Specific invest	Heliostats	Tower	Receiver	Storage (15h)	Heat	Transport
	specific invest	пеноѕіаіѕ	lower	Receiver	Storage (1511)	exchanger	system
2023*	380 €/kW _{th}	75 €/m²	2000 €/m	40 €/kW _{th}	12 €/kWh _{th}	50 €/kW _{th}	120000 €/pc

* 100 MW $_{\rm th}$ plant with 20 x 5 MW $_{\rm th}$ receivers

Expected economic competitiveness for solid particle CSP system

Our technology: Centrifugal Particle Receiver (CentRec®)

