A Digital Twin Environment for
In-Situ Solar Tower Plant
Optimization

By Max Pargmann
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» Raytracing — a perfect tool for power
plants?

» Differentiable Raytracing: Bringing
Raytracing to the next level
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= Motivation

» Raytracing — a perfect tool for power
plants?

» Differentiable Raytracing: Bringing
Raytracing to the next level
= Results on:
» Heliostat Calibration

= Heliostat Surface Reconstruction
» Flux Density Prediction

= Conclusion & Outlook







Motivation - Raytracing

» Raytracing is one of the most
common tools for solar tower power
plants due to its realistic physics

= |t is mainly used to predict the
iIrradiance at the receiver

» Rays are emanated from a light
source and reflected inside a defined
volume until they get absorbed by
the receiver/target




Motivation - Raytracing

= Heliostat errors can reduce the
power plants efficiency and can
damage components

= Pure simulations neglect:
» Misalignment
» Mirror Deformations




Motivation — Heliostat Calibration

Digital Instance - Real Object
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Motivation — Heliostat Calibration

* Fully automated
» BUT:

» Underlying geometry model is not
accurate enough
» Neglects time, angle dependencies

= Mean dataset size is to small for
accurate heliostat control




Motivation — Stripe Pattern Deflectometry

» Stripe pattern is projected onto the

calibration target

* From multiple images the surface is
reconstructed

» Extremely accurate surface
measurement

= BUT:

= Automation is pending since over 10
years
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Motivation — Raytracing a Perfect Tool for Solar Tower -
Plants?

» Supplied by external data, raytracing can
» predict a realistic flux density map
» enable semi-closed loop heliostat control without additional sensors

* But:
» Data supply chains are unreliable
» Data set size is to small
» Model parameters are inaccurate
= Can only predict flux density map other parameters must be given

= Solution:
» |[ntegration of ray tracing into a machine learning pipeline
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The New Differentiable Raytracing Environment

= For this the raytracing environment
has to be differentiable
= Diff. coord systems

* Inverse bilinear extrapolation for ray
distribution




The New Differentiable Raytracing Environment

* Not necessary but helpful:

» Degrees of Freedom of Surfaces (blue
dots) can dynamically reduced by using
diff. NURBS (Non-Uniform Rational B-
Spline) (red dots)




The New Differentiable Raytracing Environment

» Optimization of (almost) arbitrary

object parameters using Al Routines /~  Diff. Raytracing Environment
(Autodiff., Backprop., Adam, etc.)

be treated as Digital Twin Instances

» Objects inside this Environment can
Digital Digital
Instance Instance
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The New Differentiable Raytracing Environment

» Optimization of (almost) arbitrary
object parameters using Al Routines
(Autodiff., Backprop., Adam, etc.)

» Objects inside this Environment can
be treated as Digital Twin Instances

» Differentiability allows integration
and training of neural networks

Diff. Raytracing Environment




The New Differentiable Raytracing Environment

» Optimization of (almost) arbitrary
object parameters using Al Routines
(Autodiff., Backprop., Adam, etc.)

sssssssss

= Objects inside this Environment can
be treated as Digital Twin Instances '

EX T OD

» Differentiability allows integration Small Datasets Big Datasets
and training of neural networks

= Enables continuously improvement






Results

= Raytracing Environment was tested on
three different tasks

» Heliostat Calibration (Toy Example)
» Heliostat Surface Reconstruction
» Heliostat Flux Density Prediction

= All 3 uses the images from the heliostat
calibration

= Works in a data range of 1 to 5 Images

* No external preprocessing

Real Image

Simulated




Results — Heliostat Calibration -

» Toy Example with reduced geometric

model has average accuracy of few o 0.0052
. .
mra | | g =+ 0.0085 |rad
» Test on real data still pending ~y 0.011



Results — Heliostat Calibration -

» Toy Example with reduced geometric

N
model has average accuracy of few . _ min S arccos (i, - Fimodel.i).
mrad a:ﬁa’YaéagkaTﬁc:GRlaGR2 i=1

= Test on real data still pending

= Raytracer can use the same Loss as
standard calibration algorithms (e.g.
Levenberg Marquardt)

—If not a single ray is generated
algorithms can behave identical



Results — Heliostat Calibration -

» Toy Example with reduced geometric

N
model has average accuracy of few . _ min S arccos (i, - Fimodel.i).
mrad a:ﬁa’YaéagkaTﬁc:GRlaGR2 i=1

= Test on real data still pending

= Raytracer can use the same Loss as 117 s Function — i Ytrue — Ypredicted|
standard calibration algorithms (e.g. ’
Levenberg Marquardt) "

—If not a single ray is generated T B | 2
algorithms can behave identical L2LossFunction = Zl(yf’me Ypredicted)

—~>Image Loss Terms (L1, L2, Hausdorff-
Distance) provide additional information

—>Can include surface information data,
and rotational displacements

1=1

dp(X,Y) = max { supd(z,Y), supd(X,y) }
reX yeY



Results — Heliostat Surface Reconstruction -

= Sun blur makes reconstruction
ambiguous

- LN
* NURBS act as regularization ! | \
= Can reconstruct coarse surfaces up 2 . L
to 400m (and more) \ |
= Can reconstruct fine surfaces up to
o \ . . . .




Results — Heliostat Surface Reconstruction

Deflectometric measured surface: =4 @ ca. 50m




Results — Heliostat Surface Reconstruction

Deflectometric measured surface: i @ ca. 50m

Reconstruction in focal length: SR @ ca. 50m




Results — Heliostat Surface Reconstruction
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Deflectometric measured surface: g% @ ca. 50m
Reconstruction in focal length: [ @ ca. 50m
Reconstruction in focal length with 5 images: Q. ?‘ @ @ ca.50m




Results — Heliostat Surface Reconstruction
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Deflectometric measured surface: S ' B @ ca. 50m

Reconstruction in focal length: i é § @ca. 50m

Reconstruction in focal length with 5 images: [ é‘ @ @ ca 50m
Reconstruction in higher distance: s %‘“ ’ @100m




Equinox Shortest day Measurement

Longest day

Results — Flux Density Prediction

Ground Truth Prediction
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Conclusion -

» Mathematical Proof that diff. Raytracing can improve heliostat calibration -
Validation still pending

» Reconstruction of surface defects possible up to a few hundred meters

» Reconstruction is worse in exact focal length due to higher
underdetermination

» “Wrong” surface is still able to improve the prediction throughout the year



Outlook

» Heliostat calibration has do be evaluated with real data
» Apply at the solar tower for multiple heliostats
* Neural network integration for higher data set sizes

» Optimization of other solar field parameters, e.g.:
» Heliostat field design
» Receiver design
» Gradient based aimpoint management



Thanks for your attention!
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