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Motivation
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2O IUSHEHZUE00 A Why ASlI-based nowcasting?

1% A Highest variabilities of irradiance on local scale
in space and time due to cloud passing

A Local observations enable irradiance forecasts
in high temporal and spatial resolutions

A Improved situational awareness helps solar

| power plant and local grid operators to

T YT B minimize costs and risks (e.g. power plant/solar
field control, less curtailment, cheaper
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1000 | A Why using ML for nowcasting?

a00 ' A Deep learning has proven to outperform
600 | - previous state-of-the-art techniques in many
400 | . computer vision problems [3]

200 | f A ML techniques are widely used in various
forecasting problems [4]
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Introduction to all sky imager-based nowcasting ,_#7
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+ Cloud modelling [6] \ KCIoud Tracking [6]
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Cloud detection [5]
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Machine learning methods for improving ASI nowcasts ,_#7
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Sky images A Option 1: Apply ML to solve individual steps in
- processing pipeline
Cloud detection DE— A E.g. Cloud detection using a Convolutional Neural Network
- = (CNN) for semantic segmentation (pixelwise classification)
Cloud modelling

Convolutional Neural Network

'

Cloud tracking

'

Shadow projection

Encoder Decoder

'

Allocation of cloud transmittance

'

Latent features

Irradiance nowcast




ML-based image segmentation for cloud detection 4#7
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A Cloud detection in all-sky images | Low-layer
poses a challenging task:
A Variable spatial distribution and size

A Atmospheric conditions and
oversaturation of pixels in vicinity of
the sun influence visual appearance

A Distortion effects of fish-eye lens
and decreasing resolution towards
horizon

A Multi-layer conditions with high
visual similarity of individual layers

Low-layer Mid-layer Low- & Mid-layer

Deep learning-based methods
proven to handle these challenges
best [17], but how to train these
models?



ML-based image segmentation for cloud detection 4#7
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A Quality of a ML model strongly depends on the amount and quality of data used for training

A Manual creation of segmentation masks is time consuming (770 images from PSA! manually annotated)
Y Mo dag could help to increase performance but is infeasible on large scale (>10000)

A Alternative: Apply self-supervised learning to enable the model to extract relevant information (latent
features) for segmentation
Y Mo caves pretext task based on pseudolabels generated from the data itself, e.g.:
Deep Cluster [10] Inpainting T Superresolution (IP-SR) [8,9]
Alternation of clustering/classification Y | maeganstruction

B

CNN

Images are clustered based
on extracted feature vectors

w Classification
Cluster assignments are

used as pseudolabels

Training on pseudolabels

1 Plataforma Solar de Almeria, southern Spain, owned and administrated by CIEMAT



ML-based image segmentation for cloud detection ,_#7
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@ Evaluation of semantic segmentation by

comparing 4 different model initializations [5] |
I

A 4 classes: sky, low-/mid-/high-layer cloud .
, R
A Training on 616 images S

A Validation on 154 images |

Almplementedinp y t h fastad s
library [11]

YO Y0
6 U O (] 6 Q(JL) B Inpainting-

Superresolution
| Random | ImageNet | IP-SR

Accuracy [%] 78.3 82.1 85.8 85.2
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ML-based image segmentation for cloud detection ,_#7
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Classwise accuracy of Inpainting-Superresolution Examples of cloud-layer detection
initialization [%]
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