Estimation and prediction of traffic dynamics with data-driven low-dimensional model based on SUMO

Dr Jakub Krol (UCL), Dr Bani Anvari (UCL) and Prof Roberto Lot (UoS)

Structure

• Motivation
• Proposed approach
• Estimation and prediction results
• Conclusions and further work
Motivation
Motivation – G-Active project

Issues
• Research has estimated that 5-10% of fuel can be saved if drivers do eco-driving
• The state-of-the-art eco-driving techniques do not take into account the naturalistic behaviour of human drivers

Our Solution
• A unified driver model is proposed which describes the driver preference during car following and cornering cases
• Speed optimization problem is formulated considering both fuel economy and driver preference
Motivation

EDAS
- Fuel Consumption Model
- Driver Satisfaction Model
- Optimization Algorithm

Input
- Road Curvature
- Lead-vehicle
- Headway Distance
- Ego-vehicle

Optimal Input

SUMO 2019 - Simulating Connected Urban Mobility
Berlin-Adlershof, Germany / 15 May 2019
Motivation

Solution will be constrained by behaviour of lead vehicle

SUMO 2019 - Simulating Connected Urban Mobility

Berlin-Adlershof, Germany / 15 May 2019
Motivation

Prediction framework

1. Need to be able to make predictions based on available live measurements such as those from induction loops

2. We want to be able to sample any location in the network and obtain estimation and prediction corresponding to that point

3. Need to be able to obtain estimate and prediction fast
Proposed Approach
Test scenario

Vehicles approaching a junction

- Simple scenario to facilitate understanding and validity of the methodology
- Dimensions: 95.25m long, 3.20m wide
- Induction loop at 89.25m (only measurement available to investigate traffic state)
- Vehicles enter lane on average every 10s, leading to congested traffic conditions
- Vehicles follow Intelligent Driver Model (IDM)
- Simulation time is 2h with sampling rate of 0.1s resulting in 72,000 measurements
- Train data: $t > 1h$, Test data: $t < 1h$
Methodology

Prediction framework

1. Need to be able to make predictions based on available live measurements such as those from induction loops

2. We want to be able to sample any location in the network and obtain estimation and prediction corresponding to that point

3. Need to be able to obtain estimate and prediction fast
Model-Based Estimation

Assume that investigated system can be expressed as

\[a_{t+1} = A(a_t) + v_t \]
\[y_t = C(a_t) + w_t \]

Given:
- Imperfect dynamic model
- Noisy measurements

What is the optimal estimate of the state?

Solve:

\[\min_a \sum_t (||a_{t+1} - A(a_t)||_2 + ||y_t - C(a_t)||_2) \]

Kalman Filter

Kalman filter gives the optimal state estimate under the following assumptions:

- **Linear model** and **Gaussian distribution** of inaccuracies

Two-step procedure at each time step:

- Model **prediction**
- Measurement **update**

Source: Ulusoy, M. Understanding Kalman Filters, Part 1: Why Use Kalman Filters?
Model-Based Estimation

Assume that investigated system can be expressed as

\[a_{t+1} = A(a_t) + v_t \]

\[y_t = C(a_t) + w_t \]

Given:
- Imperfect dynamic model
- Noisy measurements

What is the optimal estimate of the state?

Solve:

\[\min_a \sum_t (||a_{t+1} - A(a_t)||_2 + ||y_t - C(a_t)||_2) \]

Kalman Filter

Kalman filter gives the optimal state estimate under the following assumptions:
- **Linear model** and **Gaussian distribution** of inaccuracies

Two-step procedure at each timestep:

- **Model prediction**
- **Measurement update**

Source: Ulusoy, M. Understanding Kalman Filters, Part 1: Why Use Kalman Filters?
Methodology

Prediction framework

1. Need to be able to make predictions based on available live measurements such as those from induction loops

2. We want to be able to sample any location in the network and obtain estimation and prediction corresponding to that point

3. Need to be able to obtain estimate and prediction fast
Constructing continuous velocities

Problem:

Adaptive Smoothing Method (Treiber et al, 2002):

• Spatiotemporal domain perturbations propagate downstream at free flow velocity and upstream at congested velocity:

\[z_{\text{free}} = \frac{1}{\sum \Phi} \sum_{i}^{n} \sum_{j=j_{\text{min}}}^{j_{\text{max}}} \Phi(x_i - x, t_j - t - x/c_{\text{free}}) z_{i,j} \]

Use the interpolated quantity: \(z_{\text{interp}} = wz_{\text{free}} + (1 - w)z_{\text{cong}} \)

• Exponential kernel used to decay points which are far away. We replace it with: \(\Phi(x, t) = \frac{1}{x^2 + t^2} \)

Constructing continuous velocities

Figure: (a) Spatio-temporal diagram obtained from the modified Adaptive Smoothing Method; (b) spatial snapshot at $t = 200s$; (c) temporal snapshot at $x = 48m$.

Note that locations of the snapshots are represented on the spatio-temporal diagram.
Methodology

Prediction framework

1. Need to be able to make predictions based on available live measurements such as those from induction loops

2. We want to be able to sample any location in the network and obtain estimation and prediction corresponding to that point

3. Need to be able to obtain estimate and prediction fast
Dimensional reduction

- If the state space consists of the discretised spatial domain, the dimension of the problem will grow large at the network level.
- Instead we express velocity field as sum of time-invariant structures:

\[u(x, t) \approx \sum_{i=1}^{r} a_i(t) \Phi_i(x) \]

- State space will consist of \(a_i \) where \(r \) can be chosen freely.
Dimensional reduction

Principal Component Analysis

• Principal Component Analysis gives structures Φ_i and coefficients a_i which are optimal with respect to l^2 – norm

Source: Nazrul, Syed S. The DOs and DON'Ts of Principal Component Analysis
Dimensional reduction and linear model

- Number of principal components are chosen based on explained variance, where six components explain 99% of variance.

- Computation time will be reduced by utilising the linearity of the Kalman filter.

- Get models by solving following on train data:

\[
\begin{align*}
\min_A & \sum_t ||a_{t+1} - Aa_t||_2 \\
\min_C & \sum_t ||y_t - Cx_t||_2
\end{align*}
\]

where \(y_t = [y_t, y_{t-1}, \ldots, y_{t-5}]^\top \)

- Furthermore we provide noise covariance matrices:

\[
Q = e_p e_p^\top \quad R = e_m e_m^\top
\]

where

\[
\begin{align*}
e_p &= [a_1 - Aa_0 \quad \ldots \quad a_N - Aa_{N-1}] \\
e_m &= [y_0 - Ca_0 \quad \ldots \quad y_N - Ca_N]
\end{align*}
\]
Methodology

Framework training
• Run **SUMO simulation** to obtain underlying discrete data
• Construct **continuous velocity field**
• Calculate **principal components**
• **Project** high-dimensional data to obtain low-dimensional state
• Find **linear dynamics** matrices and corresponding error covariance matrices

Application

Estimation:
• At each time step apply **Kalman filter** to get state estimate

Prediction:
• Use linear model to **propagate state forward in time**
• **Recompose** the high dimensional **velocity field** using predicted state
• **Integrate along spatiotemporal diagram** from initial position

SUMO 2019 - Simulating Connected Urban Mobility
Berlin-Adlershof, Germany / 15 May 2019
Estimation and Prediction Results
Estimation

Kalman filter modification

- In the two step procedure, when measurements are not available update step is omitted

Relative error

\[e_i^2 = \frac{\sum_{t>150} (a_i(t) - \hat{a}_i(t))^2}{\sum_{t>150} (a_i(t))^2} \]

<table>
<thead>
<tr>
<th>Principal Component</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\epsilon_i)</td>
<td>0.242</td>
<td>0.284</td>
<td>0.382</td>
<td>0.584</td>
<td>0.856</td>
<td>0.789</td>
</tr>
</tbody>
</table>
Estimation

Discrete metric – perfect drivers

Imperfect drivers:
• For desired speed $u^*(t)$ given by IDM, the speed of each vehicle is modified such that $u(t) = ku^*(t)$ where $k \sim \mathcal{N}(1, \sigma^2)$
Prediction

Projection Coefficients

Discrete Metric

SUMO 2019 - Simulating Connected Urban Mobility
Berlin-Adlershof, Germany / 15 May 2019
Conclusions and Future Work
Conclusions

- The methodology which estimates velocity profiles based on the real-time information from induction loops was presented.

- Implementation is linear and low-dimensional; suitable in situations where computational cost and simplicity are of high importance.

- Analysis on a problem of vehicles approaching traffic junction in a congested traffic showed that, due to semi-linear dynamics, such system can be well estimated with few structures and linear Kalman filter.

- Robustness in the estimation of key dynamical features when applied to dynamics with driver imperfections.
Future work

Simulated Urban Scenario

- Selly Oak, Birmingham
- Birmingham makes induction loop measurements publicly available, allowing us to test validity of estimation and prediction framework

Potential method improvements

- **Nonlinear Dynamics**: IDM-based Galerkin projection, Machine Learning
- **Alternative dimensional reduction techniques**
- **Improvements to ASM**: Smoothing parameters, Different kernel choice
Many thanks for your attention.

Dr Jakub Krol
@JakubKrol5
j.krol@ucl.ac.uk