From Automated to Manual - Modeling Control Transitions with SUMO

Leonhard Lücken, Evangelos Mintsis, Kallirroi Porfyri, Robert Alms, Yun-Pang Flötteröd, Dimitris Koutras
leonhard.lueckken@dlr.de

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 723390
TransAID - Transition Areas for Infrastructure-Assisted Driving
Outline

● A Model for Automated Vehicles

● Transitions of Control and a Model for human driving

● Traffic Management in Transition Areas – Two Use Cases
Models for automated vehicles

• ACC Car-Following Model [Milanés et al., 2014]

 i. **Speed control mode**: is designed to maintain the by the driver chosen desired speed,

 ii. **Gap control mode**: aims to maintain a constant time gap between the controlled vehicle and its predecessor,

 iii. **Gap-closing control mode**: enables the smooth transition from speed control mode to gap control mode,

 iv. **Collision avoidance mode**: prevents rear-end collisions.
Parametrized Lane Change Model

i. Variance based sensitivity analysis
 → Influential lane change calibration parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Leader gap (ego lane)</th>
<th>Leader gap (target lane)</th>
<th>Follower gap (target lane)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity Index</td>
<td>S_l [%]</td>
<td>ST_l [%]</td>
<td></td>
</tr>
<tr>
<td>lcStrategic</td>
<td>0.39</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>lcKeepRight</td>
<td>1.08</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>lcSpeedGain</td>
<td>0.90</td>
<td>8.12</td>
<td></td>
</tr>
<tr>
<td>lcAssertive</td>
<td>59.15</td>
<td>77.03</td>
<td></td>
</tr>
</tbody>
</table>

ii. SUMO lane change output vs HMETC lane change data
 → Reconciliation
ToC / MRM Model

(a) Successful ToC

- Automated mode
- Take-over time
- Available lead time

TOR

„reduced performance“

error-free

headway [s]

0 1 2 3

0 1 2 3

time t [s]

0 100 200 300

0 100 200 300
Imperfect Driving

General CF Model:

\[\dot{x}(t) = v(t) \]
\[\dot{v}(t) = a(\Delta x(t), \Delta v(t)) \]

Perceived quantities:

\[\Delta \tilde{x} = \Delta x + \eta_x \]
\[\Delta \tilde{v} = v + \eta_v \]

Erroneous CF Model:

\[\dot{x}(t) = v(t) \]
\[\dot{v}(t) = a(\Delta \tilde{x}(t), \Delta \tilde{v}(t)) \]
ToC / MRM Model

- https://sumo.dlr.de/wiki/Car-Following-Models/ACC
- https://sumo.dlr.de/wiki/ToC_Device
- https://sumo.dlr.de/wiki/Driver_State
Traffic management in Transition Areas
Scenario 1

Service „Path advice“

TOR area	Merge area
Path provision, Lane advices | Headway advices

automated, connected | manual

RSU

05/2019 | TransAID | SUMO User Conference
Traffic management in Transition Areas
Scenario 1

Color \sim speed

Color \sim ToC state

MRM

Post-ToC

manual

automated
Traffic management in Transition Areas
Scenario 1

Results

- 1h random vehicle flow (LoS C ~ 1155 veh/h)
- Fleet mixes (MV-AV):
 mix 1: 70-30
 mix 2: 50-50
 mix 3: 20-80
Traffic management in Transition Areas

Scenario 2

Service „TOR distribution“

Takeover distribution

control area

Takeover accumulation

automated, connected

RS

manual

RSU

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS

Service “TOR distribution”

Takeover distribution

control area

Takeover accumulation

automated, connected

RSU

manual

RS
Traffic management in Transition Areas
Scenario 2

https://sumo.dlr.de/wiki/TraCI/Change_Vehicle_State
https://sumo.dlr.de/wiki/TraCI/Change_PoI_State
https://sumo.dlr.de/wiki/TraCI/Change_Polygon_State

Highlighting & polygon dynamics
Traffic management in Transition Areas
Scenario 2

Results

- 1h random vehicle flow (LoS C ~ 3234 veh/h)
- Fleet mixes (MV-AV):
 - mix 1: 70-30
 - mix 2: 50-50
 - mix 3: 20-80
Traffic management in Transition Areas
Scenario 2

Results

Without traffic management

no-AD zone
Summary

• Models:
 – New models for automated vehicles (CFModels ACC + CACC)
 – New model for simulation of control transitions
 – Driver State model

• Assessment of TM procedures:
 – Safety improvements for smoother flows at lane drops
 – Reducing perturbances by distribution of ToCs

• Upcoming:
 – Realistic simulation of communications
 – Combination of TransAID Services
 – Real world feasibility assessment
Thank you!

See also:
- Mintsis et al. 2018, *TransAID Deliverable 3.1*
- Maerivoet et al. 2018, *TransAID Deliverable 4.2*

www.transaid.eu

Funding:
EU H2020, GNo 723390
Imperfect Driving 1

General CF Model:
\[
\dot{x}(t) = v(t)
\]
\[
\dot{v}(t) = a(\Delta x(t), \Delta v(t))
\]

Perceived quantities:
\[
\Delta \ddot{x} = \Delta x + \eta_x
\]
\[
\Delta \ddot{v} = v + \eta_v
\]

Erroneous CF Model:
\[
\dot{x}(t) = v(t)
\]
\[
\dot{v}(t) = a(\Delta \ddot{x}(t), \Delta \ddot{v}(t))
\]
Perception errors:
\[\eta_x(t) = c_x \cdot \Delta x(t) \cdot H_t \]
\[\eta_v(t) = c_v \cdot \Delta x(t) \cdot H_t \]

Error base process:
\[dH_t = -\theta_t \cdot H_t \cdot dt + \sigma_t \cdot dW_t \]

Base process coefficients:
\[\theta_t = c_\theta \cdot A(t) \]
\[\sigma_t = c_\sigma \cdot (1 - A(t)) \]

Erroneous CF Model:
\[\dot{x}(t) = v(t) \]
\[\dot{v}(t) = a(\Delta \ddot{x}(t), \Delta \ddot{v}(t)) \]

\[A(t) = "awareness" \]
Imperfect Driving 3

\[A(t) = 1.0 \]

\[A(t) = 0.1 \]