DLR Portal
Home|Textversion|Imprint|Sitemap|Contact Imprint and terms of use Privacy |Deutsch
You are here: Home:Departments & Groups
Advanced Search
About us
Latest News
Departments & Groups
Thermal Process Technology
Electrochemical Energy Technology
Fuel Cell Research Oldenburg
Computational Electrochemistry
Energy System Integration
Facilities
Staff
Publications
Job Offers
Contact & How to find
Print

UNSEEN - Evaluation of uncertainties in linear energy system optimization models using neural networks



Funding organisation: Federal Ministry for Economic Affairs and Energy (BMWi),

Co-operation: Zuse Institut Berlin (ZIB), Juelich Supercomputing Center (JSC) am Forschungszentrum Jülich, GAMS Software GmbH, DLR Institut für Vernetzte Energiesysteme, Institut für Mathematik an der TU Berlin

Project Duration: 2019 to 2022

Contact: Dr. Benjamin Fuchs

Overview:

For the development and analysis of energy scenarios, the application of models is crucial. Considering the fact that energy systems analysis is an important instrument for policy advice, the question of the reliability of scenarios is essential as these scenarios are subject to a large number of uncertainties. This challenge is addressed in UNSEEN. By inspecting a very large parameter space, a hitherto unattained number of model-based energy scenarios is to be evaluated. In particular, this also includes extreme and disruptive scenarios.

In the past, the main obstacle to applying extensive parameter variations to energy scenarios was unmanageable computing time. This issue is also addressed in UNSEEN. In the predecessor project BEAM-ME, considerable success concerning the reduction of computing times of extensive and complex energy system optimization models has been achieved by the development and application of the open source solver PIPS-IPM++. This in general has laid the foundation for the application of high performance computers to solve such large models.

However, PIPS-IPM++ is a solver suited for continuous, linear optimization problems.  For modelling of real infrastructures and the derivation of concrete measures for the implementation of the energy system transformation, considering of discrete decisions is indispensable (for example, decisions for the investment in a certain storage power plant at a particular site). Solving the resulting optimization problems represents an additional challenge, which is addressed by the project’s central methodological approach – the training of neural networks  by “reinforcement learning". Among other things, this method should enable a fast "prediction" of the results of an optimization problem in order to provide a hot start solution for a deterministic solver algorithm. Based on PIPS-IPM++, this method should enable solving of so-called mixed-integer linear optimization problems on high performance computers.

Based on the results of the parameter variations for energy system optimization problems, detailed analyses of the scenario space are performed by means of model couplings (e.g. with REMix and AMIRIS) and statistical analyses. For this purpose, indicators are determined which provide information on essential aspects of the adequacy, operational safety and economic efficiency of the corresponding scenarios of future energy systems.


Projects
back to overview
2019
2018
2017
2016
2015
2014
2013
2012
prior 2012
Related Topics
System Analysis
Copyright © 2021 German Aerospace Center (DLR). All rights reserved.