19. November 2015

Aurorae Chaos - der Übergang von den Valles Marineris zu den großen Ausflusstälern

Aktuelle Bilder der vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) betriebenen, hochauflösenden Stereokamera HRSC auf der ESA-Sonde Mars Express zeigen einen Ausläufer des Gebiets Aurorae Chaos - eine östliche Fortsetzung des gewaltigen Canyonsystems der Valles Marineris auf dem Mars.

Aurorae Chaos ist ein sehr ausgedehntes "chaotisches Gebiet", das sich noch mehrere hundert Kilometer weiter nach Osten fortsetzt: Als chaotische Gebiete werden Landschaften bezeichnet, die aus einer Ansammlung von Dutzenden bis zu mehreren Hundert kleinen Bergspitzen und Tafelbergen bestehen, die bisweilen über viele tausend Quadratkilometer ein wildes, unüberschaubares Muster auf der Marslandkarte bilden, eben eine chaotische Anordnung haben.

Aurorae Chaos liegt nordöstlich der Stelle, wo die Täler Capri Chasma und Eos Chasma zusammentreffen und nimmt eine Fläche von etwa 700 mal 400 Kilometern ein. Es verbindet damit auf einer Fläche von etwas mehr als der Hälfte der Größe Deutschlands das Grabenbruchsystem der Valles Marineris mit dem Ganges Chasma. Hierdurch und weiter über die sich anschließenden Gebiete von Hydraotes Chaos und Chryse Chaos müssen einst enorme Wassermassen in Richtung der nördlichen Tiefebene geflossen sein.

Landschaftsmerkmale deuten auf gewaltige Wassermassen in der Marsvergangenheit

Auf den Bildern erkennt man sehr gut den Übergang der kollabierten Regionen nach Süden (links auf den Bildern 1, 3 und 4) zu der Region in der Mitte der Bilder mit einer ebenen, glatten Oberfläche, einem Teil des Tals Ganges Chasma. Die fächerförmigen Ablagerungen entlang der Hänge deuten darauf hin, dass Massenbewegungen die Hänge abgegangen sind, dabei Sedimente mit sich führten und dort abgelagert haben. Etwas weiter nordwärts (rechts im Bild) ist ein steiler Abhang zu sehen, dem sich ein von Kratern übersätes Plateau anschließt: ein Teil der Hochlandregion Xanthe Terra. Der Höhenunterschied, der in der 3D-Ansicht (Bild 3) markant zu sehen ist und auch in der topographischen Bildkarte (Bild 4) deutlich hervortritt, beträgt vom Boden des Tals zu dem Plateau 4800 Meter - das ist die Höhe des Mont Blanc, allerdings vom Meeresspiegel aus gemessen. Dies sind enorme Dimensionen.

Das Gebiet auf dem Bild zeigt einmal mehr eine Fülle von Landschaftsmerkmalen, die Hinweise drauf geben, dass in der Vergangenheit des Mars große Wassermassen über die Oberfläche geströmt sein müssen. Man nimmt an, dass chaotische Gebiete entstehen, wenn unterirische Eis- oder Wasserreservoirs durch Wärme schmelzen und plötzlich freigesetzt werden. Die Wärme könnte von Vulkanen in der Nähe abgestrahlt oder durch große Asteroideneinschläge entstanden sein. Ist das Wasser abgeflossen, kollabiert die Oberfläche über den neu entstandenen Hohlräumen und die Landschaft stürzt in sich zusammen. Schaut man sich die topographische Darstellung (Bild 4) genauer an, ist zu erkennen, dass die Hochlandplateaus, die im Süden und Norden Aurorae Chaos umgeben, mehr oder weniger gleich hoch sind. Jedoch zeigen sich auf dem südlichen Plateau (links oben in den Bildern 1, 3 und 4) ein Feld von Bergen mit abgerundeten Gipfelkuppen, gewissermaßen ein kleines, mehrere tausend Meter höher gelegenes chaotisches Terrain, und darüber hinaus eine große Zahl von kleineren Bergen als im Tal, die von der Erosion noch nicht abgetragen wurden. Das Plateau im Norden hingegen zeigt überhaupt keine Spuren einer erodierten Landschaft. Hier sehen wir lediglich einige kleinere verzweigte Täler auf der Oberfläche. Möglicherweise war also im Süden im Untergrund Wasser vorhanden, im Norden hingegen nicht.

Inmitten der Talniederung (Mitte der Bilder 1, 3 und 4), zeigt eine Gruppe von Restbergen eine stufenförmige Beschaffenheit sowie einige fächerförmige Ablagerungen im Norden. Dies könnte darauf hindeuten, dass es in diesem Gebiet einst unterschiedliche Grundwasserniveaus oder unterschiedlich tief gelegene Eisvorkommen gegeben hat. Ebenfalls interessant sind zwei Verwerfungen, die einen zusammengebrochenen Block durchschneiden - zu erkennen in der oberen Bildmitte. Betrachtet man wieder die topographische Darstellung (Bild 4) erscheint es, als ob diese Verwerfungen ebenfalls das südliche Plateau durchziehen (obere linke Ecke des Bildes). Sie könnten das Ergebnis eines später stattgefundenen tektonischen Ereignisses oder einfach abgesackt sein.

  • Bildverarbeitung

    Die Aufnahmen mit der HRSC (High Resolution Stereo Camera) entstanden am 16. Juli 2015 während Orbit 14.653 von Mars Express bei 320 Grad östlicher Länge und 8 Grad südlicher Breite. Die Bildauflösung beträgt etwa 17 Meter pro Bildpunkt (Pixel). Die Farbdraufsicht (Bild 1) wurde aus dem senkrecht auf die Marsoberfläche gerichteten Nadirkanal und den Farbkanälen der HRSC erstellt; die perspektivische Schrägansicht (Bild 2) wurde aus den Stereokanälen der HRSC berechnet. Das Anaglyphenbild (Bild 3), das bei Betrachtung mit einer Rot-Blau- oder Rot-Grün-Brille einen dreidimensionalen Eindruck der Landschaft vermittelt, wurde aus dem Nadirkanal und einem Stereokanal abgeleitet. Die in Regenbogenfarben kodierte Draufsicht (Bild 4) beruht auf einem digitalen Geländemodell der Region, von dem sich die Topographie der Landschaft ableiten lässt.

  • Das HRSC-Experiment

    Die High Resolution Stereo Kamera wurde am Deutschen Zentrum für Luft- und Raumfahrt (DLR) entwickelt und in Kooperation mit industriellen Partnern gebaut (EADS Astrium, Lewicki Microelectronic GmbH und Jena-Optronik GmbH). Das Wissenschaftsteam unter Leitung des Principal Investigators (PI) Prof. Dr. Ralf Jaumann besteht aus 52 Co-Investigatoren, die aus 34 Institutionen und elf Nationen stammen. Die Kamera wird vom DLR-Institut für Planetenforschung in Berlin-Adlershof betrieben. Die hier gezeigten Darstellungen wurden von der Planetary Sciences Group an der Freien Universität Berlin erstellt.

Verwandte Links

Kontakt

Elke Heinemann

Leitung Digitale Kommunikation
Deutsches Zentrum für Luft- und Raumfahrt (DLR)
Kommunikation
Linder Höhe, 51147 Köln
Tel: +49 2203 601-1852

Prof. Dr. Ralf Jaumann

Freie Universität Berlin
Institut für Geologische Wissenschaften
Planetologie und Fernerkundung
Malteserstr. 74-100, 12249 Berlin

Ulrich Köhler

Deutsches Zentrum für Luft- und Raumfahrt (DLR)
Institut für Planetenforschung
Rutherfordstraße 2, 12489 Berlin