June 29, 2018 | New astronaut assistance system launches to the ISS along with additional experiments

CIMON – a 'cyber colleague' for Alexander Gerst

  • The technology demonstrator CIMON and six other experiments for the 'horizons' mission were launched to the International Space Station on 29 June 2018
  • In addition to the astronaut assistance system, this includes a new Earth observation instrument, experiments for cell and materials research, and two student experiments
  • The docking will take place on 2 July 2018
  • Focus: Space, artificial intelligence, environmental monitoring

A new 'cyber colleague' is on its way to the International Space Station (ISS) to join German ESA astronaut Alexander Gerst. CIMON and six other experiments for the 'horizons' mission lifted off from Cape Canaveral Air Force Station in Florida on Friday, 29 June 2018 at 11:42 CEST (05:42 local time) on board a US Dragon capsule with a Falcon 9 launcher. In addition to the astronaut assistance system, a new Earth observation instrument, experiments for cell and materials research and two student experiments will reach the ISS on 2 July.

CIMON – a new 'cyber colleague' on the ISS

Alexander Gerst and the rest of the crew on the ISS will soon welcome a new colleague. The Crew Interactive MObile companioN (CIMON) is an innovative assistance system for astronauts, which is equipped with artificial intelligence (AI) and can act autonomously. Not only can CIMON 'see', 'hear', 'understand' and 'speak' with its cameras, sensors, microphones and processors, but it can also present and explain a wide range of information, as well as experiment and repair instructions. CIMON can even perform simple routine tasks such as documenting experiments or searching for objects.

Since the assistant is voice-controlled, the astronauts can perform tasks using both their hands while accessing the services of the 'cyber colleague'. Twelve internal fans provide mobility in all directions, allowing CIMON to move freely and perform rotational movements such as nodding or shaking its head. The system will be used and tested for the first time during the 'horizons' mission. In the long term, however, CIMON and its successors will not only be able to assist astronauts in space, but also in the areas of medicine and nursing, education and human-machine interaction. CIMON was built by Airbus under a contract awarded by the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) Space Administration in Bonn with funding from the German Federal Ministry for Economic Affairs and Energy (Bundesministerium für Wirtschaft und Energie; BMWi) for use in the European Columbus laboratory on the ISS. At the heart of the CIMON AI language comprehension system is IBM's Watson technology.

DESIS – keeping an eye on Earth’s ecosystems

The DLR Earth Sensing Imaging Spectrometer (DESIS) instrument, a spectrometer built for environmental monitoring and precision farming, will send a wide range of data to Earth from the ISS. This data will allow scientists to observe changes in Earth's surface ecosystems. Based on the information obtained, they can assess the status of forests or agricultural areas and make yield forecasts. Another purpose of DESIS is to safeguard and improve global food production. DESIS will be the first instrument on board the ISS to be integrated into the Multiple User System for Earth Sensing (MUSES) platform. The 235 DESIS sensor channels will focus particularly on light in the visible and near-infrared portions of the spectrum, in the wavelength range of 400 to 1000 nanometres. The resolution of the instrument is 30 metres per pixel. Unlike conventional instruments, the special DESIS technology also allows observation of Earth's surface from different angles. DESIS was developed jointly by the DLR Institute of Optical Sensor Systems and the US company Teledyne Brown Engineering.

The 235 DESIS sensor channels will focus particularly on light in the visible and near-infrared portions of the spectrum, in the wavelength range of 400 to 1000 nanometres. The resolution of the instrument is 30 metres per pixel. Unlike conventional instruments, the special DESIS technology also allows observation of Earth's surface from different angles. DESIS was developed jointly by the DLR Institute of Optical Sensor Systems and the US company Teledyne Brown Engineering.

Living cells in 3D – the FLUMIAS experiment

For the FLUMIAS experiment, a fluorescence microscope is being launched to the ISS that is capable of producing high-resolution images of living cells. This will enable such long-term observations to be carried out in space for the first time. During the 'horizons' mission, the cytoskeleton and nuclei of living macrophages – that is, human immune cells, will be examined. Scientists from the University of Magdeburg will use the live cell imaging method, in which special dyes or fluorescent proteins are used to illuminate particular cell structures.

The extremely precise FLUMIAS images also allow researchers to create 3D models or short videos of the observations. The aim of the research is to gain new insights in the fields of cell and molecular biology as well as biomedicine. In the long term, these should help to keep astronauts healthy during their stay in space, but also be used more generally in therapy for neurodegenerative and immune diseases or cancer.

Gene Control Prime – gene regulation of immune cells

What influence does gravity have on gene regulation and the functioning of immune cells? This is the question that will be answered by the Gene Control Prime experiment, which will investigate the genetic causes of immunodeficiency in microgravity. Two of the focal points of the experiment are the activation and functioning of the phagocytes of the immune system, macrophages. On the ISS, the scientists want to investigate the effect of space conditions on the human immune system and bone metabolism. The study of the molecular mechanisms regulating the immune system is not only relevant to future long-term astronaut missions, but in addition the results should help to understand the general causes of immunodeficiency and assist with the development of new therapies. On board SpaceX CRS-15, there are 24 experiment containers, each the size of a smartphone.

CompGran investigates the dynamics of granular materials

Matter that is made up of granules, such as sand or grain, can behave very differently depending on the circumstances. If the material is compacted, it behaves like a solid. For example, compacted layers of sand are used as a substrate in road construction. If it is not compressed, the matter can be poured like a liquid. The dynamics and physical properties of granular matter are highly complex. They are easier to investigate if the processes are not affected by gravity.

For the CompGran experiment, Airbus Defence and Space has developed a total of four experimental cells on behalf of the DLR Space Administration. The volume of these experimental cells can be changed by a piston to vary the compactness of the granules. CompGran is being installed in the Fluid Science Laboratory of the Columbus module as part of the new ESA Soft Matter Dynamics experimental facility. The researchers are hoping that the experiments will provide new insights into the dynamics of granular matter, which in the medium to long term will contribute to the improvement of industrial processes involving bulk solids such as coal dust, flour or grain.

Überflieger-Studierendenexperimente auf der ISS (Papell & Arise)
Überflieger" - ein Wettbewerb des Raumfahrtmanagements im Deutschen Zentrum für Luft- und Raumfahrt (DLR) zu bewerben. Hauptgewinn: ein Experiment auf die ISS bringen und unter den Bedingungen des Weltraums zu forschen. Neben Experten des DLR und der Deutschen Physikalische Gesellschaft (DPG) war auch der deutsche Astronaut Gerhard Thiele Mitglied des Auswahlgremiums. Geprüft wurden die Experimentvorschläge vor allem auf ihren wissenschaftlichen Gehalt, ihre technische Ausgereiftheit und ihre praktische Umsetzbarkeit. Am Ende setzten sich Studierende der Universitäten Frankfurt (EXCISS), Stuttgart (PAPELL) und Duisburg-Essen (ARISE) durch. Die drei Gewinnerteams werden ihre Experimente während der horizons-Mission des deutschen ESA-Astronauten Alexander Gerst im Sommer 2018 zur Internationalen Raumstation ISS senden. Ihre Versuche zur Planetenentstehung und Raumfahrttechnologie werden dort persönlich von Alexander Gerst betreut. Bis dahin durchlaufen die Projekte den gesamten Prozess einer realen Raumfahrtmission - von der Ausarbeitung ihrer wissenschaftlichen Ziele, über das Entwerfen eines technischen Designs und die notwendigen Tests, bis hin zum Betrieb des Experiments auf der ISS. Dabei ist die Größe der Experimentanlagen stark eingeschränkt: Sie müssen in drei zirka 10 mal 10 mal 15 Zentimeter große Container passen. Auf der Raumstation sollen die Anlagen mindestens 30 Tage lang in Betrieb sein. Von den gesammelten praktischen Erfahrungen werden die Studierenden enorm profitieren, denn der Wettbewerb Überflieger ergänzt das Studium qualitativ und gibt Studierenden die Gelegenheit, eigene Forschungsfragen selbst kreativ auszuarbeiten und umzusetzen. In diesem Video präsentieren wir zwei Gewinnerteams. Die Experimente ARISE & PAPELL starten mit SpaceX-15 am 29.6.2018 zur ISS.
Credit:

DLR

Pumps and planets – student experiments PAPELL and ARISE

Also on board SpaceX CRS-15 are two experiments from the 'High-flyers' competition organised by DLR and the German Physical Society (Deutsche Physikalische Gesellschaft; DPG). Of the numerous ideas that students from German universities submitted for ISS experiment, an expert jury selected the best three. In the 'Pump Application using Pulsed Electromagnets for Liquid Relocation' (PAPELL) experiment, students from the University of Stuttgart are investigating a novel pump technology. This moves a ferrofluid, a colloidal liquid with very small magnetic particles held in suspension, with the help of electromagnets. This pump has no moving mechanical components. This means that wear, susceptibility to errors and noise are minimised. In two sub-experiments, the team will investigate the transport of the liquid and small solid globules in it. There are numerous applications for such a pump in space, such as for the fuel supply to the engines of launchers and spacecraft.

The ARISE experiment, designed by students from the University of Duisburg-Essen, deals with the formation of planets. According to current theory, in the early phase of planet formation, micrometre-sized particles collide, adhere to one another and thus form larger aggregates. If these grow to a size of several millimetres, they would theoretically have to bounce off each other like billiard balls. So how can it be that planets still emerge? ARISE examines the electrostatic charge of particles. Millimetre-sized glass beads are placed in a transparent container and shaken so that they collide against each other. The resulting electrostatic charges and their interactions are monitored by cameras. The scientists suspect that the alternating forces will lead to an overall attractive force that helps glass beads to accumulate and form agglomerations. This theory will be tested in the long-term microgravity on the ISS.

Credit:

DLR (CC-BY 3.0).

DownloadDownload

Related Links

Related News

Contact

Diana Gonzalez Velden

Communications & Media Relations, Web Editor
German Aerospace Center (DLR)
German Space Agency at DLR
Königswinterer Straße 522-524, 53227 Bonn
Tel: +49 228 447-388

Volker Schmid

ISS Specialist Group Leader, Head of the Cosmic Kiss Mission
German Aerospace Center (DLR)
German Space Agency at DLR
Science and Exploration
Königswinterer Straße 522-524, 53227 Bonn

Katrin Stang

German Aerospace Center (DLR)
German Space Agency at DLR
Research and Exploration
Königswinterer Straße 522-524, 53227 Bonn

Uwe Knodt

Overall project manager DESIS
German Aerospace Center (DLR)
Board Projects and Quantum Computing Initiative
Linder Höhe, 51147 Köln