12. Oktober 2022
Festigung einer bedeutenden Rolle in der Laserkommunikation mit Satelliten

Neue op­ti­sche Bo­den­sta­ti­on am DLR-Stand­ort Ober­pfaf­fen­ho­fen ein­ge­weiht

Optische Bodenstation auf dem Dach
Op­ti­sche Bo­den­sta­ti­on auf dem Dach
Bild 1/5, Credit: DLR (CC BY-NC-ND 3.0)

Optische Bodenstation auf dem Dach

Die neue op­ti­sche Bo­den­sta­ti­on auf dem Dach des DLR-In­sti­tuts für Kom­mu­ni­ka­ti­on und Na­vi­ga­ti­on in Ober­pfaf­fen­ho­fen.
Neues Teleskop
Neu­es Te­le­skop
Bild 2/5, Credit: DLR (CC BY-NC-ND 3.0)

Neues Teleskop

Das neue Te­le­skop der op­ti­schen Bo­den­sta­ti­on am DLR-Stand­ort Ober­pfaf­fen­ho­fen ver­fügt über ei­nen 80-Zen­ti­me­ter Spie­gel.
Infografik zur Bodenstation
In­fo­gra­fik zur Bo­den­sta­ti­on
Bild 3/5, Credit: DLR (CC BY-NC-ND 3.0)

Infografik zur Bodenstation

Die In­fo­gra­fik zeigt die An­ord­nung der neu­en Bo­den­sta­ti­on, bei der das Licht des Te­le­skops zur Si­gnal­ana­ly­se in das dar­un­ter lie­gen­de La­bor­ge­bäu­de ge­lei­tet wird.
Lieferung des neuen Teleskops
Lie­fe­rung des neu­en Te­le­skops
Bild 4/5, Credit: DLR (CC BY-NC-ND 3.0)

Lieferung des neuen Teleskops

Für den Aus­bau der op­ti­schen Bo­den­sta­ti­on am DLR- Stand­ort Ober­pfaf­fen­ho­fen wur­de ein neu­es Te­le­skop ge­lie­fert und ein­ge­baut.
Einweihung der neuen optischen Bodenstation
Ein­wei­hung der neu­en op­ti­schen Bo­den­sta­ti­on
Bild 5/5, Credit: © DLR. Alle Rechte vorbehalten

Einweihung der neuen optischen Bodenstation

Am 12. Ok­to­ber 2022 wur­de die neue leis­tungs­star­ke op­ti­sche Bo­den­sta­ti­on fei­er­lich am DLR in Ober­pfaf­fen­ho­fen ein­ge­weiht. (v.l.n.r.) Dr. An­ke Pa­gels-Kerp, DLR-Be­reichs­vor­stän­din Raum­fahrt, Dr. Chris­ti­an Fuchs, DLR-Ab­tei­lungs­lei­ter für Op­ti­sche Sa­tel­li­ten­links, Prof. Chri­stoph Gün­ther, DLR-In­sti­tuts­di­rek­tor Kom­mu­ni­ka­ti­on und Na­vi­ga­ti­on, Dr.-Ing. Flo­ri­an Da­vid, Stell­ver­tre­ten­der In­sti­tuts­di­rek­tor, Dr. Ca­ro­lin Rich­ter, Head Di­vi­si­on Sa­tel­li­te Na­vi­ga­ti­on and Sa­tel­li­te Com­mu­ni­ca­ti­on, Bun­des­mi­nis­te­ri­um für Di­gi­ta­les und Ver­kehr, Flo­ri­an Moll, DLR-In­sti­tut für Kom­mu­ni­ka­ti­on und Na­vi­ga­ti­on.
  • Laserkommunikation wird zukünftig ein unverzichtbares Instrument für eine schnelle und sichere Datenverbindung per Satellit sein.
  • Die vielfältigen Möglichkeiten der optischen Freiraumkommunikation können nun mit einer neu ausgebauten Bodenstation am DLR-Standort Oberpfaffenhofen getestet und weiterentwickelt werden.
  • Die Technologie ermöglicht Datenraten im Terrabit-Bereich, die Nutzung von Quantenverschlüsselungstechnologien sowie hochpräzise Satellitennavigationssysteme.
  • Schwerpunkte: Raumfahrt, Kommunikation, Navigation, Erdbeobachtung

Satelliten werden zusehends zu Netzwerkknoten des Internets. Während terrestrische Knoten über Glasfasernetze eingebunden sind, können Satelliten mit aktuellen Entwicklungen nur dann mithalten, wenn sie ebenfalls optisch vernetzt werden. Programme der europäischen Kommission wie die Secure Connectivity Initiative stützen sich ebenso auf diese Technologie wie eine Vielzahl kommerzieller Netzwerke wie Starlink oder Oneweb, die mit ihren nächsten Generationen ähnliche Entwicklungen anstreben. Im Zentrum der Überlegungen stehen optische Satellitenlinks, wie sie am Institut für Kommunikation und Navigation des Deutschen Zentrums für Luft- und Raumfahrt (DLR) seit mehr als 20 Jahren konzipiert, entwickelt und getestet werden. Optische Verbindungen werden zudem nicht nur für Kommunikationsnetzwerke in Betracht gezogen, sondern auch für die Quantenverschlüsselung. Diese soll das sichere Internet der Zukunft ermöglichen und die nächste Generation von Satellitennavigationssystemen. Das DLR betreibt seit vielen Jahren experimentelle Bodenstationen, um diese Technologien voranzutreiben. Am 12. Oktober 2022 wurde nun eine neue leistungsstärkere Bodenstation am DLR-Standort Oberpfaffenhofen eingeweiht.

„Zukünftig wird es immer wichtiger, Satelliten effizient miteinander zu vernetzen sowie den Datenaustausch zum Boden sicher und leistungsstark zu gestalten im Angesicht der immer größeren Datenmengen bei Kommunikation, Navigation und Erdbeobachtung ebenso wie vor dem Hintergrund knapper werdender Funklizenzen“, sagt die DLR-Vorstandsvorsitzende Prof. Dr.-Ing. Anke Kaysser-Pyzalla. „Die optische Freiraumkommunikation bietet hier eine vielversprechende Perspektive, deren vielfältige Möglichkeiten wir mit der neu ausgebauten Bodenstation in Oberpfaffenhofen austesten und weiterentwickeln werden. Insbesondere bei der Absicherung des Austauschs sensibler Daten etwa bei kritischen Infrastrukturen im All und auf der Erde können uns Lösungen der satellitenbasierten Quantenkommunikation entscheiden voranbringen.“ Das Kernstück der neuen optischen Bodenstation ist ein neues Teleskop mit 80-Zentimeter Durchmesser in einer sogenannten Coudé-Anordnung, bei der das Licht des Teleskops über Spiegel direkt in ein Labor darunter geführt wird. Dies ermöglicht völlig neue Experimente, die in dieser Form bislang nicht durchgeführt werden konnten.

Video: Optische Bodenstation Oberpfaffenhofen OGSOP
Die Laserkommunikation wird zukünftig ein unverzichtbares Instrument für eine schnelle und sichere Datenverbindung zu und mittels Satelliten und Flugzeugen sein. Laserverbindungen ermöglichen enorme Datenraten, Quantenverschlüsselung sowie präzisere zukünftige Satellitennavigationssysteme. Zur...

Datenübertragung mit Terabit-Geschwindigkeit

Optische Verbindungen zwischen Satelliten und den Empfangsstationen am Boden, wie sie bei der Anbindung von Kommunikationssatelliten an das Internet oder bei der Datenübertragung von Erdbeobachtungsatelliten an deren Daten-Prozessierungszentren eingesetzt werden, sind mit dem nötigen Weg durch die Atmosphäre eine besondere Herausforderung. Temperaturschwankungen in der Atmosphäre führen zu einer Verzerrung der optischen Satellitensignale, die Übertragungsfehler bewirken können.

Die neue Bodenstation erlaubt es diese Phänomene genauer als bisher zu untersuchen, um Verfahren für eine fehlerfreie Übertragung auch unter schwierigen Bedingungen zu erreichen. So zielen die Arbeiten des DLR-Instituts für Kommunikation und Navigation sowohl darauf ab, Signale am Boden bestmöglich empfangen zu können, als auch die Sendesignale der Bodenstation so „vorzuverzerren“, dass sie den Satelliten im All möglichst ungestört erreichen. In bodennahen Versuchen konnte das Institut bereits 2016 eine Übertragungsrate von 1,72 Terabit pro Sekunde erreichen und 2017 eine Übertragungsrate von 13.2 Terabit pro Sekunde realisieren. Diese Datenrate würde ausreichen, um ganz Westeuropa mit einer schnellen Internetanbindung zu versorgen. Mit der neuen Bodenstation sollen solche Versuche nun auch mit Satelliten durchgeführt werden.

Quantenschlüssel aus dem All

Eine genaue Entzerrung des Satellitensignals ist zudem eine Grundvoraussetzung, um Quantenschlüssel aus dem All möglichst effizient verteilen zu können. Das DLR-Institut für Kommunikation und Navigation hat dazu erfolgreiche Vorarbeiten geleistet und bereits im Jahr 2013 zusammen mit der Ludwig-Maximilians-Universität München (LMU) erfolgreiche Übertragungsversuche von einem Flugzeug zum Boden durchgeführt. Quantenschlüssel sollen künftig genutzt werden, um die verschlüsselte terrestrische Übertragung so abzusichern, dass sie Angriffen durch Quantencomputer standhalten. „Eine beweisbar sichere Absicherung der Kommunikation ist insbesondere für Nutzer wie Regierungsstellen, Behörden, Banken, Versicherungs- und Industriegesellschaften von immenser Bedeutung", sagt Dr. Susann Groß, Leiterin der DLR-Programmdirektion für Raumfahrtforschung und -technologie.

Präzisere Navigation mit optischen Satellitenlinks

Satellitennavigationssysteme wie das europäische Galileo und das amerikanische GPS sind bereits heute als unabdingbare Infrastrukturen im alltäglichen Leben und Wirtschaften verankert. Sie senden präzise Zeitsignale aus. Wenn der Empfänger diese Information von mindestens vier Satelliten empfängt, die Uhren korrekt synchronisiert und die Satellitenbahnen genau bekannt sind, kann der Empfänger daraus seine exakte Position ermitteln. Um die Zeitsignale der Satelliten zu synchronisieren und die Satellitenbahnen zu bestimmen, muss heute ein komplexer Prozess auf der Basis von Messungen einer Vielzahl von Sensorstationen am Boden ablaufen. Am DLR wurde mit Kepler ein neuer Ansatz entwickelt, bei dem optische Verbindungen zwischen Navigationssatelliten eingesetzt werden. Diese optischen Verbindungen werden genutzt, um die Satelliten direkt zu synchronisieren und um die Bahnen mit nur zwei Bodenstationen exakt zu bestimmen. Dies führt nicht nur zu einer deutlichen Vereinfachung des Systems, sondern auch zu einer erheblich verbesserten Genauigkeit

„Der Kepler-Ansatz hat das Potenzial diezukünftige Automatisierung im Verkehr durch hochpräzise Ortsdaten deutlich zu erleichtern“, sagt Dr. Pagels-Kerp, DLR-Bereichsvorständin Raumfahrt. Zudem wäre das System kaum mehr anfällig für Störungen, die heute etwa in Kriegs- und Krisengebieten willentlich herbeigeführt werden. In diesem Kontext wird die neue Bodenstation wertvolle Beiträge für die Validierung der DLR-Konzepte liefern.

Technologietransfer

Das DLR-Institut für Kommunikation und Navigation ist eine der weltweit führenden Forschungseinrichtungen für die Entwicklung optischer Freiraumverbindungen. Im Umfeld des Instituts haben sich Firmen wie TESAT Spacecom in Backnang und die Ausgründung Mynaric zu den bedeutendsten Firmen in diesem Sektor entwickelt. Die neue Bodenstation wird dabei helfen, diese starke deutsche Positionierung zu erhalten und weiterzuentwickeln.

Kontakt
  • Falk Dambowsky
    Lei­tung Pres­se, Pres­se­re­dak­ti­on
    Deut­sches Zen­trum für Luft- und Raum­fahrt (DLR)

    Kom­mu­ni­ka­ti­on
    Telefon: +49 2203 601-3959
    Linder Höhe
    51147 Köln
    Kontaktieren
  • Prof. Dr. Christoph Günther
    Deut­sches Zen­trum für Luft- und Raum­fahrt (DLR)
    In­sti­tut für Kom­mu­ni­ka­ti­on und Na­vi­ga­ti­on
    Münchener Straße 20
    82234 Weßling
    Kontaktieren
DLR-Pressemitteilungen

Newslet­ter

Blei­ben Sie auf dem Lau­fen­den und abon­nie­ren Sie den DLR-Newslet­ter mit Ar­ti­keln der DLR-Re­dak­ti­on in deut­scher und eng­li­scher Spra­che.

Neueste Nachrichten

Hauptmenü

Quantencomputer

Neuartige Form eines Rechners, der auf Basis der Gesetze der Quantenphysik arbeitet. Seine Quantenbits (Qubits) können nicht nur die Zustände 0 und 1 einnehmen, sondern auch Zwischenwerte. Quantencomputer haben das Potenzial, bestimmte Aufgaben zu lösen, an denen klassische Computer scheitern.