20. July 2022
Laser-based detection of space debris

DLR in­au­gu­rates the Jo­hannes Ke­pler Ob­ser­va­to­ry

Formal inauguration of DLR's Johannes Kepler Observatory
For­mal in­au­gu­ra­tion of DLR's Jo­hannes Ke­pler Ob­ser­va­to­ry
Image 1/4, Credit: ©DLR/Uli Regenscheit

Formal inauguration of DLR's Johannes Kepler Observatory

From left to right: Dirk Zim­per, DLR Ex­ec­u­tive Board Rep­re­sen­ta­tive for De­fence and Se­cu­ri­ty Re­search; Ka­trin Schin­dele, mem­ber of the Baden-Würt­tem­berg State Par­lia­ment for the dis­trict of Freuden­stadt; Hu­bert Blah­nik, Ger­man Fed­er­al Min­istry of De­fence; Anke Kaysser-Pyza­l­la, Chair of the DLR Ex­ec­u­tive Board; Anke Pagels-Kerp, DLR Di­vi­sion­al Board Mem­ber for Space; Ma­jor Gen­er­al Michael Traut, Ger­man Armed Forces Space Com­mand; Thomas Deko­rsy, Head of the DLR In­sti­tute of Tech­ni­cal Physics; Anke Ko­var, Man­ag­er of the DLR sites in Stuttgart, Lam­pold­shausen and Ulm.
DLR's Johannes Kepler Observatory
DLR's Jo­hannes Ke­pler Ob­ser­va­to­ry
Image 2/4, Credit: © DLR. All rights reserved

DLR's Johannes Kepler Observatory

On the Empfin­gen in­no­va­tion cam­pus, DLR has set up a re­search ob­ser­va­to­ry that is unique in this form.
View of the telescope into the night sky above Empfingen
View of the tele­scope in­to the night sky above Empfin­gen
Image 3/4, Credit: DLR (CC BY-NC-ND 3.0)

View of the telescope into the night sky above Empfingen

The tele­scope of the Jo­hannes Ke­pler Ob­ser­va­to­ry is housed in an al­most 15-me­tre-tall round tow­er with a ro­tat­ing dome. The slot­ted dome ro­tates syn­chronous­ly with the tele­scope and opens for about two me­tres in the re­spec­tive view­ing di­rec­tion.
Focus on space debris
Fo­cus on space de­bris
Image 4/4, Credit: © DLR. All rights reserved

Focus on space debris

The tele­scope is the largest of its kind in Eu­rope. The pri­ma­ry mir­ror has a di­am­e­ter of 1.75 me­tres.
  • The Johannes Kepler Observatory is a unique DLR research and development station to determine the trajectory and composition of space debris in the future.
  • This information is crucial to prevent active satellites and space missions from collisions with space debris.
  • The telescope at the observatory is the largest of its kind in Europe for observing and evaluating objects in Earth orbit.
  • The official inauguration of the observatory took place on 20 June 2022.
  • Focus: Spaceflight, security, laser technology, space debris

With the Johannes Kepler Observatory, the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) has a unique research and development station. The observatory will use state-of-the-art laser technology to determine the trajectory and composition of space debris in near-Earth orbit as quickly, precisely and reliably as possible. This information helps, for example, to protect active satellites from collisions with space debris by enabling evasive manoeuvres to be planned more efficiently. After roughly two years of construction and commissioning, DLR officially inaugurated the observatory on 20 July 2022 together with guests from politics, administration, industry and science. The observatory is located on the Empfingen innovation campus, approximately 60 kilometres southwest of Stuttgart. The DLR Institute of Technical Physics, whose central research facilities include the observatory, is also located there.

Enabling satellite and space missions in the future – despite space debris

"Whether for information, communications or navigation, satellite technologies have become an indispensable part of modern business, science and society. But the space above Earth is becoming more and more crowded and space debris is an increasing problem. As such, DLR is already working on technological solutions for greater safety in space. DLR's Johannes Kepler Observatory will play a central role in this," explains Anke Kaysser-Pyzalla, Chair of the DLR Executive Board.

"Spaceflight is fascination. It is the urge to discover and the origin of knowledge, innovation and new technology that improves life on Earth. Preserving the possibilities of spaceflight for future generations is a mission that Germany is embarking on with partners in Europe and around the world. DLR's Johannes Kepler Observatory is an important part of this. As a unique research platform for observing and evaluating objects in Earth orbit, it will allow us to continue the safe operation of satellites in the future and the successful deployment of robotic and astronautical missions," says Anna Christmann, Federal Government Coordinator for German Aerospace Policy.

DLR research telescope is the largest of its kind in Europe

The telescope at the Johannes Kepler Observatory is the largest of its kind in Europe for observing and characterising objects in Earth orbit. The primary mirror has a diameter of 1.75 metres. The telescope is housed in an almost 15-metre-tall round tower with a rotating slotted dome. It rotates synchronously with the telescope and opens only for about two metres in the respective viewing direction. The dome is mounted on rollers and driven by a motor. The telescope can be rotated at up to six degrees per second. This high ‘tracking speed’ in combination with the large primary mirror is a technological challenge. However, both are necessary to view the largest possible area of the sky and to be able to simultaneously detect, locate and characterise objects up to 10 centimetres across and moving at 28,000 kilometres per hour.

The focus of the research and development work of the team from the DLR Institute of Technical Physics is on high-precision distance measurement using special lasers. In addition, the DLR researchers want to locate previously unknown objects in Earth orbit. To do this, they carry out spectral analyses – they examine the colour composition of the sunlight scattered by the observed objects. In this way, they can draw conclusions, for example, about what kind of object it is, what material it is made of, how big it is, how it rotates and its orbit.

Co-founder of modern astronomy as eponym

Johannes Kepler is regarded as the co-founder of modern astronomy and modern natural sciences. He formulated the laws to describe how the planets orbit the Sun: in an elliptical orbit with the Sun at a focal point of the planet's orbit. Johannes Kepler spent his childhood and youth in the southwest of Germany.

The investment of around 2.5 million euros comes from funds provided by DLR and the German Federal Ministry for Economic Affairs and Climate Action (BMWK). The research work contributes to the safe use of space. It is supported by the Security Programme Coordination organisation at DLR with funds from the Federal Ministry of Defence (BMVg).

  • Denise Nüssle
    Ger­man Aerospace Cen­ter (DLR)

    Com­mu­ni­ca­tions and Me­dia Re­la­tions
    Telephone: +49 711 6862-8086
    Fax: +49 711 6862-636
    Pfaffenwaldring 38-40
    70569 Stuttgart
  • Thomas Dekorsy
    Head of the In­sti­tute
    Ger­man Aerospace Cen­ter (DLR)
    In­sti­tute of Tech­ni­cal Physics
    Pfaffenwaldring 38-40
    70569 Stuttgart


Stay up to date and sub­scribe to the DLR newslet­ter with ar­ti­cles from the DLR ed­i­to­ri­al team in Ger­man and En­glish.

Main menu