16. März 2020
Vom kosmischen Staub zu den Planeten

Asteroid Ryugu wahrscheinlich Bindeglied der Planetenbildung

Mehr zu:
Raumfahrt
Oberflächentemperatur des Asteroiden Ryugu im Tageslauf
Oberflächentemperatur des Asteroiden Ryugu im Tageslauf
Bild 1/9, Credit: JAXA, Hayabusa2 TIR team

Oberflächentemperatur des Asteroiden Ryugu im Tageslauf

Die japanische Raumsonde Hayabusa2 beobachtete Ryugu im thermalen Infrarot der Wellenlängen von 8-12 Mikrometern mit ihrem ‚Thermal Infrared Imager‘ (TIR). In dieser Animation ist die Temperaturverteilung auf der Tagseite über einen Zeitraum von etwa anderthalb Asteroidentagen dargestellt. Ein Tag-und-Nach-Zyklus auf Ryugu dauert 7,63 Stunden. Die Falschfarben geben entsprechend der Skala am rechten Rand die Oberflächentemperatur in Grad Kelvin wider. Nach ‚Sonnenaufgang‘ auf dem Asteroiden erwärmt sich der Asteroid relativ schnell von 230 Kelvin (minus 43 Grad Celsius, dunkelblauer Farbsaum links) auf 300 Kelvin (27 Grad Celsius, orange) und kühlt nach Sonnenuntergang auch wieder schnell auf 230 Kelvin ab (blauer Farbsaum rechts). Die schnelle Erwärmung deutet auf eine geringe Dichte und zudem hohe Porosität des Materials mit vielen Hohlräumen im Asteroiden hin. Die ausgesprochen gleichmäßige Temperaturverteilung auf der Tagseite lässt auf ein sehr homogenes Oberflächenmaterial schließen.
Asteroiden Ryugu aus sechs Kilometern Entfernung
Dicht am Asteroiden Ryugu
Bild 2/9, Credit: JAXA, University of Tokyo, Kochi University, Rikkyo University, Nagoya University, Chiba Institute of Technology, Meiji University, University of Aizu and AIST.University of Aizu, Kobe University, Auburn University, JAXA

Dicht am Asteroiden Ryugu

Am 20. Juli 2018 nahm die optische Teleobjektivkamera (ONC-T) der japanischen Hayabusa2-Sonde den Asteroiden Ryugu aus sechs Kilometern Entfernung auf. Gut erkennbar sind die zahlreichen großen Felsbrocken auf der Asteroidenoberfläche sowie der große Krater in der Bildmitte. Ein Pixel entspricht etwa 60 Zentimetern.
Entstehungsszenario für Ryugu
Entstehungsszenario für Ryugu
Bild 3/9, Credit: Okada et al. Nature 2020

Entstehungsszenario für Ryugu

Über ein Jahr lang untersuchte die japanische Raumsonde Hayabusa2 mit dem deutschen Landemodul MASCOT den nur knapp einen Kilometer großen Asteroiden Ryugu. So stellen sich Wissenschaftler nun dessen Entstehungsgeschichte vor 4,5 Milliarden Jahren vor: Zunächst bildeten sich Flocken und Körnchen aus Staub in der um die Sonne rotierende Scheibe aus Staub und Gas (1), ehe sich durch die Akkretion dieser losen Flocken poröse Planetesimale zusammenballten (2). Aktuelle Untersuchungen legen nahe, dass der ursprüngliche Mutterkörper von Ryugu sich kaum verdichtete und ebenfalls stark porös war. Dabei könnte es zur Bildung eines festeren Kerns gekommen sein, die Wissenschaftler halten aber auch eine graduelle Zunahme der Dichte zum Zentrum des Mutterkörpers für denkbar (3). Durch Einschläge und Kollisionen mit anderen Asteroiden (4) kam es zu einer Fragmentierung des Mutterkörpers; die großen „Fels-”Brocken auf Ryugu dürften hier ihren Ursprung haben. Ein Teil der Trümmermassen war dann das Ausgangsmaterial für die Akkretion von Ryugu (5), mit porösen Blöcken und Lockermaterial und dazwischen einigen kompakteren Blöcken höherer Dichte vom ursprünglichen Kern auf der Oberfläche. Seine heutige, an einen Diamanten erinnernde Form (6) nahm Ryugu im Laufe der Zeit durch seine Rotation an.
Nahaufnahme des von MASCOT untersuchten Steins
Untersuchte Region auf Ryugu
Bild 4/9, Credit: MASCOT/DLR/JAXA

Untersuchte Region auf Ryugu

Nahaufnahme des von MASCOT untersuchten Steins: Der Gelbe Pfeil zeigt die Beleuchtungsrichtung, die gepunktete Linie trennt den beobachteten Stein vom Hintergrund. Das rot eingefärbte Gebiet zeigt den Teil des Steins, in dem vom Radiometer MARA die Oberflächentemperatur gemessen wurde, die gestrichelte Line zeigt einen Vorsprung im Stein. Der Maßstab in der Mitte des Bildes zeigt die Dimensionen in dieser Entfernung von der Kamera. Aufgenommen hat das Bild die DLR-Kamera MASCAM auf MASCOT.
Der Meteorit ‚Allende‘, ein ‚kohliger Chondrit‘
Der Meteorit ‚Allende‘, ein ‚kohliger Chondrit‘
Bild 5/9, Credit: Shiny Things

Der Meteorit ‚Allende‘, ein ‚kohliger Chondrit‘

Der Meteorit Allende ist ein so genannter ‚kohliger Chondrit‘, eine kohlenstoffreiche Klasse von Steinmeteoriten. Er ist benannt nach dem Ort Pueblito de Allende in Mexiko, in dessen Umgebung zahlreiche Stücke eines am 8. Februar 1969 in der Atmosphäre zerbrochenen, tonnenschweren Asteroiden gefunden wurden. Typisch sind die kugelförmigen ‚Chondren‘. Die Silikatkügelchen gelten als 4,5 Milliarden Jahre alte Urbausteine der Planeten. Die Hayabusa2-Wissenschaftler gehen davon aus, dass auch das Material von Ryugu chemisch etwa dem der chondritischen Meteorite entspricht. Hayabusa2 hat Proben von Ryugu genommen, die auf dem Weg zur Erde sind. Ihre Analyse im Labor wird mit Spannung erwartet.
Dezember 2020 – Rückkehr zur Erde
Dezember 2020 – Rückkehr zur Erde
Bild 6/9, Credit: DLR (CC-BY 3.0)

Dezember 2020 – Rückkehr zur Erde

Im Dezember 2020 wird die japanische Mission Hayabusa2 zur Erde zurückkehren und vor ihrem Eindringen in die Erdatmosphäre (bei dem sie verglühen wird) eine versiegelte Kapsel mit Proben von zwei unterschiedlichen Stellen auf dem Asteroiden Ryugu abtrennen, die, von der Erdatmosphäre und einem Fallschirm abgebremst, in Australien landen wird.
MASCOT-Radiometer MARA
MASCOT-Radiometer MARA
Bild 7/9, Credit: DLR (CC-BY 3.0)

MASCOT-Radiometer MARA

Das Radiometer MARA wird genutzt, um die Oberflächentemperatur auf dem Ryugu in hoher Auflösung zu vermessen sowie die Temperaturunterschiede beim Tag-/Nachtwechsel auf dem Asteroiden.
Asteroidenlander MASCOT an Bord der Raumsonde Hayabusa2
Asteroidenlander MASCOT an Bord der Raumsonde Hayabusa2
Bild 8/9, Credit: DLR (CC-BY 3.0)

Asteroidenlander MASCOT an Bord der Raumsonde Hayabusa2

Eine 3200 Millionen Kilometer weite Reise liegt hinter der japanischen Raumsonde Hayabusa2 mit dem deutsch-französischen Lander MASCOT (Mobile Asteroid Surface Scout) an Bord.
Meteorit vom Tagish-See
Meteorit vom Tagish-See
Bild 9/9, Credit: Michael Holly, Creative Services, University of Alberta

Meteorit vom Tagish-See

Bei der Auswertung der MASCam-Aufnahmen identifizierten die Wissenschaftler zwei unterschiedliche Typen von Gesteinen: eine mit scharfen Kanten und glatten Bruchflächen, und eine zweite mit Oberflächen, die an einen Blumenkohl erinnern. Auf den mit Leuchtdioden bestrahlten Nachtaufnahmen dieser etwas krumpeligen Oberflächen entdeckten die Forscher in der fast schwarzen Gesteinsmatrix helle Einsprengsel von Mineralen, die an Mineralinklusionen in Meteoriten vom Tagish-See erinnern (Bild). Am 18. Januar 2000 regneten nach der Explosion einer großen Feuerkugel über Kanada hunderte kleine Meteoriten auf die Erde und zahlreiche Bruchstücke wurden damals auf dem Eis des gefrorenen, namensgebenden Sees gefunden. Bei den "Tagish-Lake-Meteoriten" handelt es sich um sehr seltene Steinmeteoriten aus der Klasse der sogenannten CI-Chondriten. Das C steht für das chemische Elements Kohlenstoff, und das 'I' für die Ähnlichkeit mit dem Ivuna Meteoriten aus Tansania. Es sind mit die primitivsten und ältesten Bestandteile des Sonnensystems, Überbleibsel der ersten festen Körper, die in der stellaren Urwolke entstanden sind. Man nimmt an, dass sich aus ihnen die Körper des Sonnensystems entwickelt haben.
  • Infrarot-Aufnahmen zeigen, dass Ryugu rundum fast vollständig aus hochporösem Material besteht. 
  • Asteroid ist vermutlich das Ergebnis eines durch Einschläge zertrümmerten Mutterkörpers, der sich neu zusammenfand. 
  • Wissenschaftler des DLR sind an Nature-Veröffentlichung beteiligt.
  • Schwerpunkte: Raumfahrt, Exploration

Das Sonnensystem mit seinen Planeten bildete sich vor rund 4,5 Milliarden Jahren. Zahlreiche bruchstückhafte Zeitzeugen dieser frühen Phase ziehen bis heute als Asteroiden ihre Bahnen um die Sonne. Rund Dreiviertel davon sind kohlenstoffreiche C-Typ-Asteroiden wie auch 162173 Ryugu, der 2018 und 2019 das Ziel der japanischen Weltraummission Hayabusa2 war und die sich gegenwärtig auf ihrem Rückflug zur Erde befindet. Zahlreiche Wissenschaftler, darunter auch Planetenforscher des Deutschen Zentrums für Luft- und Raumfahrt (DLR), untersuchten den knapp einen Kilometer großen nah der Erdbahn kreuzenden kosmischen "Schutthaufen" intensiv. Nun zeigen in der Fachzeitschrift NATURE veröffentlichte Infrarot-Aufnahmen der Raumsonde, dass der Asteroid rundum fast vollständig aus hochporösem Material besteht. Demnach hat sich Ryugu größtenteils aus den Bruchstücken eines durch Einschläge zertrümmerten Mutterkörpers gebildet. Die hohe Porosität und der damit verbundene geringe innere Zusammenhalt der Gesteinsbrocken auf Ryugu sorgen dafür, dass solche Körper beim Eintritt in die Erdatmosphäre vermutlich in zahlreiche Fragmente auseinanderbrechen. Deshalb lassen sich kohlenstoffreiche Meteoriten nur sehr selten auf der Erde finden, weil die Atmosphäre tendenziell einen höheren Schutz vor ihnen bietet.

Temperaturverhalten verrät Dichte

Diese Untersuchung der globalen Eigenschaften von Ryugu bestätigen und ergänzen die Erkenntnisse, die der deutsch-französische Lander MASCOT im Rahmen der Hayabusa2-Mission bereits für die Landeumgebung auf Ryugu erbrachte. "Fragile, hochporöse Asteroiden wie Ryugu sind wahrscheinlich das Bindeglied in der Evolution von kosmischem Staub zu massiven Himmelskörpern", sagt Dr. Matthias Grott vom DLR-Institut für Planetenforschung, einer der Autoren der aktuellen NATURE-Veröffentlichung. "Hier schließt sich eine Lücke im Verständnis der Planetenbildung, da wir solches Material bei Meteoritenfunden auf der Erde bisher kaum nachweisen konnten."

Die Forscher um Erstautor Prof. Tatsuaki Okada von der japanischen Raumfahrtagentur JAXA hatten in mehreren Messreihen im Herbst 2018 mit dem Infrarot-Sensor TIR (Thermal Infrared Imager – Messungen in Wellenlängen des thermalen Infrarot zwischen 8 und 12 Mikrometern) auf Hayabusa2 im Tag-und-Nachtzyklus den Verlauf der Oberflächentemperatur des Asteroiden analysiert. Dabei stellten sie fest, dass sich die Oberfläche nach Sonnenaufgang bis auf kleine Ausnahmen sehr schnell erwärmt. "Die schnelle Erwärmung im Temperaturbereich von rund minus 43 Grad Celsius bis plus 27 Grad Celsius lässt auf eine geringe Dichte und zudem hohe Porosität des Materials mit vielen Hohlräumen schließen", erklärt Dr. Matthias Grott. Ferner bemerkenswert: Rund ein Prozent der Brocken unterscheidet sich von den meisten Brocken auf Ryugu: Diese waren auf ihrer Oberfläche kälter und ähneln eher den Meteoriten, die wir auf der Erde finden können. "Dabei handelt es sich um massivere Bruchstücke aus dem Inneren eines ursprünglichen Mutterkörpers, oder diese stammen von anderen Quellen und sind erst später auf Ryugu gefallen", ergänzt Dr. Jörn Helbert vom DLR-Institut für Planetenforschung, der ebenfalls Autor der aktuellen NATURE-Veröffentlichung ist.

Von Planetesimalen zu Planeten

Die fragile poröse Struktur der C-Typ Asteroiden könnte der Struktur von Planetesimalen entsprechen, die zu Beginn der Planetenentstehung, der Akkretion, im solaren Urnebel entstanden sind und bei unzähligen Kollisionen die Planetenbildung vorantrieben. Fast die gesamte Materie der präsolaren Wolke aus Gas und Staub ballte sich in der jungen Sonne zusammen. Als eine kritische Masse erreicht war, setzte in ihrem Zentrum der wärmeerzeugende Prozess der Kernfusion ein.

Um die junge Sonne, die fast die gesamte Materie der präsolaren Wolke in sich vereinigte, sammelte sich der Rest aus Staub, Eis und Gas in einer rotierenden Akkretionsscheibe. Durch die Wirkung der Schwerkraft formte sich in dieser Scheibe vor rund 4,5 Milliarden Jahren erste Planetenembryonen: so genannte Planetesimale. Nach einer vergleichsweise kurzen Zeitspanne von vielleicht nur zehn Millionen Jahren entstanden aus diesen Planetesimalen zunächst die Planeten und ihre Monde. Viele kleine Körper – Asteroiden und Kometen – blieben dabei übrig und konnten sich wegen der Schwerkraftstörungen, vor allem durch Jupiter, des mit Abstand größten und massereichsten Planeten, nicht zu weiteren Planeten zusammenballen.

Allerdings sind die Prozesse der Frühgeschichte unseres Sonnensystems nicht in allen Details verstanden. Viele Aussagen beruhen nur auf Modellen und ließen sich noch nicht durch Beobachtungen bestätigen, auch weil Spuren aus dessen Frühzeit rar sind. "Die Ursachenforschung am Objekt ist daher in erster Linie auf extraterrestrische Materie angewiesen, die in Form von Meteoriten aus den Tiefen des Sonnensystems auf die Erde gelangt", erläutert Dr. Jörn Helbert. Darin enthalten sind Bestandteile, die aus jener kritischen Zeit der Entstehung von Sonne und Planeten stammen. "Zudem benötigen wir Missionen zu den kleinen Körpern aus der Frühzeit des Sonnensystems wie Hayabusa2 , um die Modelle zu bestätigen, zu ergänzen oder – bei entsprechenden Beobachtungen – sie auch zu widerlegen."

Ein Gesteinsbrocken wie viele auf Ryugu

Bereits im Sommer 2019 hatten Ergebnisse des deutsch-französischen Landers MASCOT gezeigt, dass es an der Landestelle auf Ryugu ausschließlich größere Brocken gab, die hochporös und fragil sind. "Insgesamt sehen wir in den nun veröffentlichten Ergebnissen eine schöne Bestätigung der Resultate des DLR-Radiometers MARA auf MASCOT", freut sich Dr. Matthias Grott als wissenschaftlicher Leiter von MARA. "Es konnte jetzt gezeigt werden, dass der von MARA analysierte Gesteinsbrocken typisch für die gesamte Oberfläche des Asteroiden ist. Damit bestätigt sich auch, dass Bruchstücke der häufigen C-Typ Asteroiden wie Ryugu durch geringen inneren Zusammenhalt beim Eintritt in die Erdatmosphäre wahrscheinlich leicht fragmentieren und tendenziell die Atmosphäre schwerer bis hinunter zur Erdoberfläche durchdringen als andere Asteroidentypen aus kompakterem Material."

Am 3. Oktober 2018 war MASCOT im freien Fall mit Schrittgeschwindigkeit auf Ryugu gelandet und hüpfte mehrere Meter weiter, ehe das rund zehn Kilogramm schwere Experimentpaket zur Ruhe kam. Auf der Oberfläche bewegte sich MASCOT mit Hilfe eines rotierenden Schwungarms fort. So konnte MASCOT auf die "richtige" Seite gedreht werden und wegen der geringen Anziehungskraft von Ryugu sogar Sprünge auf der Asteroidenoberfläche vollführen. Insgesamt war MASCOT rund 17 Stunden auf Ryugu aktiv.

Proben von Asteroid Ryugu auf dem Weg zur Erde

Aus dem Orbit kartierte Hayabusa2 den Asteroiden in hoher Auflösung und nahm an zwei Landestellen Proben des urtümlichen Körpers auf, die derzeit in einem Transportbehälter versiegelt mit der Sonde zurück zur Erde reisen. Die Kapsel mit den Proben soll Ende 2020 in Australien landen. Bisher gehen die Forscher davon aus, dass das Material von Ryugu chemisch etwa dem der chondritischen Meteorite entspricht, die auch auf der Erde gefunden werden. Chondren sind kleine, millimetergroße Gesteinskügelchen, die sich im solaren Urnebel vor 4,5 Milliarden Jahren gebildet haben und als Urbausteine der Planetenentstehung gelten. Bisher können die Forscher allerdings nicht ausschließen, dass es sich um kohlenstoffreiches Material handelt, wie es auch auf dem Kometen 67P/Churymov-Gerasimenko im Rahmen der ESA-Mission Rosetta mit dem vom DLR gesteuerten Lander Philae gefunden wurde. Zu dieser Frage wird die Analyse der Proben von Ryugu , die auch am DLR stattfinden, mit Spannung erwartet. "Genau für diese Aufgabe - und natürlich für weitere zukünftige Missionen, bei denen extraterrestrische Proben zur Erde gebracht werden wie beispielsweise MMX – haben wir am DLR-Institut für Planetenforschung in Berlin im letzten Jahr mit dem Aufbau des Sample Analysis Labors (SAL) begonnen" sagt Dr. Jörn Helbert. Im Rahmen der japanischen Mission Martian Moons eXploration (MMX) an der sich das DLR beteiligt, ist geplant, 2024 zu den Marsmonden Phobos und Deimos zu fliegen und 2029 Proben von den asteroidengroßen Monden zur Erde zu bringen. Teil der Mission MMX wird auch ein mobiler deutsch-französischer Rover sein.

Über die Mission Hayabusa2 und MASCOT

Hayabusa2 ist eine Weltraummission der japanischen Raumfahrtagentur JAXA (Japan Aerospace Exploration Agency) zum erdnahen Asteroiden Ryugu. Der deutsch-französische Lander MASCOT an Bord von Hayabusa2 wurde vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) in enger Kooperation mit der französischen Raumfahrtagentur CNES (Centre National d'Études Spatiales) entwickelt und gebaut. Die wissenschaftlichen Experimente an Bord von MASCOT sind Beiträge des DLR, des Institut d'Astrophysique Spatiale und der Technischen Universität Braunschweig. Betrieb und Steuerung des MASCOT-Landers und seiner Experimente erfolgen durch das DLR mit Unterstützung der CNES und in kontinuierlichem Austausch mit der JAXA.

Das DLR-Institut für Raumfahrtsysteme in Bremen entwickelte federführend zusammen mit CNES den Lander und testete ihn. Das DLR-Institut für Faserverbundleichtbau und Adaptronik in Braunschweig war für die stabile Struktur des Landers zuständig. Das DLR Robotik und Mechatronik Zentrum in Oberpfaffenhofen entwickelte den Schwungarm, der MASCOT auf dem Asteroiden hüpfen ließ. Das DLR-Institut für Planetenforschung in Berlin steuerte die Kamera MASCAM und das Radiometer MARA bei. Überwacht und betrieben wurde der Asteroidenlander aus dem MASCOT-Kontrollzentrum im Nutzerzentrum für Weltraumexperimente (MUSC) am DLR-Standort Köln.

Kontakt
  • Falk Dambowsky
    Presseredaktion
    Deutsches Zentrum für Luft- und Raumfahrt (DLR)

    Media|Relations
    Telefon: +49 2203 601-3959
    Linder Höhe
    51147 Köln
    Kontaktieren
  • Dr. Jörn Helbert
    Deutsches Zentrum für Luft- und Raumfahrt (DLR)
    Institut für Planetenforschung
    Telefon: +49 30 67055-319
    Fax: +49 30 67055-384
    Rutherfordstraße 2
    12489 Berlin
    Kontaktieren
  • Dr. Matthias Grott
    Deutsches Zentrum für Luft- und Raumfahrt (DLR)
    Institut für Planetenforschung
    Telefon: +49 30 67055-419
    Rutherfordstraße 2
    12489 Berlin
    Kontaktieren
  • Dr. Tra-Mi Ho
    Deutsches Zentrum für Luft- und Raumfahrt (DLR)
    Institut für Raumfahrtsysteme
    Telefon: +49 421 24420-1171
    Robert-Hooke-Str. 7
    28359 Bremen
    Kontaktieren
Neueste Nachrichten

Cookies erleichtern die Bereitstellung unserer Dienste. Mit der Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen zum Datenschutz erhalten Sie über den folgenden Link: Datenschutz

Hauptmenü