A cubic metre of Mars

Tests for the InSight 'Mole'

11 April 2019

Autoplay
Show Info
Hide Info
Information
Close
Fullscreen
Normal
back
next
{{index}}/{{count}}
Tip:
Use <Escape>, to leave fullscreen.
  • HP3%2dErsatzmodell im DLR%2dTestlabor in Bremen
    HP3 model in the DLR test laboratory in Bremen

    A fully-functional model of the Mars ‘Mole’ is being tested on sand in a box at the DLR Institute of Space Systems in Bremen. During the experiments, a seismometer, which can be seen on the sand in front of the HP3 experiment, ‘listens’ to the activity of the Mole.

  • DLR%2dIngenieur Dr. Torben Wippermann am HP3%2dVersuchsaufbau
    DLR engineer Torben Wippermann with the HP3 experimental set-up

    The lower part of a balloon is visible above the HP3 experiment. This lightens the experiment to simulate the reduced gravity conditions found on Mars.

  • Testaufbau des HP3%2dExperiments am DLR in Bremen
    HP3 model in the DLR test laboratory in Bremen

    A fully-functional model of the Mars ‘Mole’ is being tested on sand in a box at the DLR Institute of Space Systems in Bremen. During the experiments, a seismometer, which can be seen on the sand in front of the HP3 experiment, ‘listens’ to the activity of the Mole.

  • HP3%2dExperiment auf dem Mars
    HP3 experiment on Mars

    The housing of the HP3 experiment moved slightly during hammering.

  • Die NASA%2dSonde InSight auf der Marsoberfläche
    Artist’s impression of the NASA InSight lander on the Martian surface

    Launched on 5 May 2018, NASA’s InSight spacecraft landed on 26 November 2018 just north of the Martian equator, and deploy its solar panels. SEIS, an instrument for recording seismic waves (left of image), and HP3, an instrument developed by DLR to measure the thermal conductivity of the Martian regolith and the heat flow from the interior of the planet (right of image), have been placed on the planet's surface.

  • HP3 cutaway rendering

    An artist's concept of InSight's heat probe, called the Heat Physical Properties Package, or HP³.

    This annotated cutaway rendering labels various parts inside of the instrument.

    JPL manages InSight for NASA's Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by the agency's Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supports spacecraft operations for the mission.

    A number of European partners, including France's Centre National d'Études Spatiales (CNES) and the German Aerospace Center (DLR), are supporting the InSight mission. CNES and the Institut de Physique du Globe de Paris (IPGP) provided the Seismic Experiment for Interior Structure (SEIS) instrument, with significant contributions from the Max Planck Institute for Solar System Research (MPS) in Germany, the Swiss Federal Institute of Technology (ETH Zurich) in Zurich, Switzerland, Imperial College London and Oxford University in the United Kingdom, and JPL. DLR provided the Physical Properties Package (HP³) instrument, with significant contributions from the Space Research Center (CBK) of the Polish Academy of Sciences and Astronika in Poland. Spain’s Centro de Astrobiología (CAB) supplied the wind sensors.

  • Rammsonde "Maulwurf"
    The HP3 Mole penetrometer

    On 12 February 2019 at 19:18 CET, DLR's Mars 'Mole' was released onto the Martian surface with the robotic arm of the NASA lander InSight.

  • Die InSight%2dLandesonde kurz vor der Fertigstellung
    The InSight lander nearing its completion

    Lockheed Martin Space constructed the InSight lander for NASA. The InSight lander will carry two major experiments, the Heat Flow and Physical Properties Probe (HP3) and the Seismic Experiment for Interior Structure (SEIS), to Mars, where a robotic arm will place them beside the spacecraft after landing.

  • Selfie der InSight%2dLandesonde auf dem Mars
    'Selfie' of the InSight lander on the Martian surface

    InSight's first complete 'selfie' on Mars. It shows the solar arrays and the platform of the lander. On the platform are its scientific instruments and the UHF antenna.

  • Various possible scenarios are being investigated to determine what caused the Mars ‘Mole’ to stop.
  • A fully functional model of the ‘Mole’ is being tested in a box of sand that compacts quickly and in which cavities can form as a result of the hammering.
  • Focus: Space, exploration

A blue box, a cubic metre of Mars-like sand, a rock, a fully-functional model of the Mars 'Mole' and a seismometer – these are the main components with which the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) is simulating the current situation on Mars. After its first hammering operation on 28 February 2019, the DLR Heat and Physical Properties Package (HP³), the Mars Mole, was only able to drive itself about 30 centimetres into the Martian subsurface. DLR planetary researchers and engineers are now analysing how this could have happened and looking into what measures could be taken to remedy the situation. "We are investigating and testing various possible scenarios to find out what led to the 'Mole' stopping," explains Torben Wippermann, Test Leader at the DLR Institute of Space Systems in Bremen. The basis for the scientists' work: some images, temperature data, data from the radiometer and recordings made by the French Seismic Experiment for Interior Structure (SEIS) during a brief hammering test conducted on 26 March 2019.

When the NASA InSight lander arrived on the Martian surface, everything looked even better than expected. Although the lander's camera showed numerous rocks some distance away, the immediate surroundings were free of rocks and debris. The reason why the 'Mole' hammered its way quickly into the ground after being placed on the surface of Mars and was then unable to continue its progress is now being diagnosed remotely. "There are various possible explanations, to which we will have to react differently," says Matthias Grott, a planetary researcher and the HP³ Project Scientist. A possible explanation is that the 'Mole' has created a cavity around itself and is no longer sufficiently constrained by the friction between its body and the surrounding sand.

Another type of sand

In Bremen, DLR is now experimenting with a different type of sand: "Until now, our tests have been conducted using a Mars-like sand that is not very cohesive," explains Wippermann. This sand was used during earlier tests in which the 'Mole' hammered its way down a five-metre column in preparation for the mission. Now, the Mole's ground model will be tested in a box of sand that compacts quickly and in which cavities can be created by the hammering process. During some of the test runs, the researchers will also place a rock with a diameter of about 10 centimetres in the sand. Such an obstacle in the subsurface could also be the reason why the HP³ instrument has stopped penetrating further. In all experiments, a seismometer listens to the activity of the Earth-based 'Mole'. During the short 'diagnostic' hammering on Mars, SEIS recorded vibrations to learn more about the Mole's impact mechanism. Comparisons between the data obtained on Mars and the Earth-based tests help the researchers more closely understand the real-life situation. "Ideally, we will be able to reconstruct the processes on Mars as accurately as possible."

'Moles' on Earth as guinea pigs

The next steps will follow once the scientists know what caused the progress of the 'Mole' to come to a halt on 28 February 2019. Possible measures to allow the instrument to hammer further into the ground must then be meticulously tested and analysed on Earth. For this reason, a replica of the HP3 instrument has been shipped to NASA's Jet Propulsion Laboratory in Pasadena, California. There, the DLR researchers' findings can be used to test the interaction of the 'Mole', the support structure and the robotic arm to determine whether, for example, lifting or moving the external structure is the correct solution. "I think that it will be a few weeks before any further actions are carried out on Mars," says Grott. The break in activities for the Mars Mole will only come to an end once a solution has been found for the Earth-based 'Moles'.

HP3_Flickr_Galerie

The HP³ Instrument on NASA’s InSight mission

The InSight mission is being carried out by NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, on behalf of the agency’s Science Mission Directorate. InSight is part of NASA’s Discovery Program. DLR is contributing the Heat Flow and Physical Properties Package (HP³) experiment to the mission. The scientific leadership lies with the DLR Institute of Planetary Research, which was also in charge of developing and implementing the experiment in collaboration with the DLR Institutes of Space Systems, Optical Sensor Systems, Space Operations and Astronaut Training, Composite Structures and Adaptive Systems, and System Dynamics and Control, as well as the Institute of Robotics and Mechatronics. Participating industrial partners are Astronika and the CBK Space Research Centre, Magson GmbH and Sonaca SA, the Leibniz Institute of Photonic Technology (IPHT) as well as Astro- und Feinwerktechnik Adlershof GmbH. Scientific partners are the ÖAW Space Research Institute at the Austrian Academy of Sciences and the University of Kaiserslautern. The DLR Microgravity User Support Center (MUSC) in Cologne is responsible for HP³ operations. In addition, the DLR Space Administration, with funding from the German Federal Ministry for Economic Affairs and Energy, supported a contribution by the Max Planck Institute for Solar System Research to the French main instrument SEIS (Seismic Experiment for Interior Structure).

Detailed information on the InSight mission and the HP³ experiment is available on DLR’s dedicated mission site with extensive background articles. You can also find information in the animation and brochure about the mission or via the hashtag #MarsMaulwurf on the DLR Twitter channel. Tilman Spohn, the Principal Investigator for the HP³ experiment, is also providing updates in the DLR Blog portal about the activities of the Mars Mole.

Written by Manuela Braun

Last modified:
15/04/2019 12:18:55

Contacts

 

Falk Dambowsky
German Aerospace Center (DLR)

Media Relations

Tel.: +49 2203 601-3959
Prof.Dr. Tilman Spohn
German Aerospace Center (DLR)

DLR Institute of Planetary Research

Tel.: +49 30 67055-300

Fax: +49 30 67055-303
Christian Krause
German Aerospace Center (DLR)

Microgravity User Support Center (MUSC), Space Operations and Astronaut Training

Tel.: +49 2203 601-3048
Dr Matthias Grott
German Aerospace Center (DLR)

DLR Institute of Planetary Research

Tel.: +49 30 67055-419
Torben Wippermann
German Aerospace Center (DLR)

DLR Institute of Space Systems

Tel.: +49 421 24420-1120
Dr Anko Börner
German Aerospace Center (DLR)

DLR Institute of Optical Sensor Systems

Tel.: +49 30 67055-509
Dr Roy Lichtenheldt
German Aerospace Center (DLR)

Institute of System Dynamics and Control

Tel.: +49 8153 28-3095
Dr Martin Knapmeyer
German Aerospace Center (DLR)

DLR Institute of Planetary Research

Tel.: +49 30 67055-394
Prof. Dr. Jörg Melcher
German Aerospace Center (DLR)

DLR Institute of Composite Structures and Adaptice Systems

Tel.: +49 531 295-2850

Fax: +49 531 295-2875
Marco Scharringhausen
German Aerospace Center (DLR)

The Institute of Space Systems

Tel.: +49 421 24420-1106